TECHNOLOGY/BUSINESS OPPORTUNITY High Power Microstructured Optical Fiber Amplifier Design Mitigating Stability Limitations
ID: IL-13352Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFLLNS – DOE CONTRACTORLivermore, CA, 94551, USA

NAICS

Communication and Energy Wire and Cable ManufacturingT (33592)
Timeline
    Description

    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop and commercialize its High Power Microstructured Optical Fiber Amplifier Design aimed at mitigating stability limitations. This innovative technology addresses the challenges of scaling high power fiber amplifiers beyond a few kilowatts by proposing a new microstructured fiber design that enhances core mode confinement and suppresses undesirable Transverse Mode Instabilities. The potential applications for this technology include high power fiber lasers and amplifiers for materials processing, with the current development status at Technology Readiness Level (TRL) 4-5. Interested companies are encouraged to submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence, with further details available on their website.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY/BUSINESS OPPORTUNITY Simple, Cost-Effective Method for Producing Functional Electro-Optical Materials and Devices
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop and commercialize a Simple, Cost-Effective Method for Producing Functional Electro-Optical Materials and Devices. This initiative aims to address the need for low-cost fabrication strategies for functional devices with tailored properties, particularly in optical applications such as deep UV photodetectors and flexible sensors. The technology involves innovative material transformations, allowing for the creation of semiconducting oxides from conductive metals in a single step, thereby streamlining the manufacturing process. Interested companies are encouraged to submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by following the specified guidelines. For further inquiries, contact Alex Hess at hess12@llnl.gov or Charlotte Eng at eng23@llnl.gov.
    TECHNOLOGY/BUSINESS OPPORTUNITY Piezo-driven jetting of powders for controlled packing density
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop a piezo-driven jetting method for additive manufacturing aimed at enhancing controlled packing density of powders. This innovative technology addresses challenges in producing geometrically complex parts with reduced porosity and improved material efficiency, making it applicable for both metal and ceramic powders in various industries, including manufacturing and pharmaceuticals. Interested companies with relevant expertise are encouraged to submit a statement of interest, including company details and capabilities, to LLNL's Innovation and Partnerships Office by contacting Austin Smith or Charlotte Eng via email or phone. This opportunity is not a procurement but a call for industry partners to commercialize the technology, which is currently at Technology Readiness Level 3 and has patent protection filed.
    TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials
    Active
    Energy, Department Of
    The Department of Energy, through the Idaho National Laboratory (INL) managed by Battelle Energy Alliance, is offering a technology licensing opportunity for the Embedded Fiber Optic Sensors in High-Temperature Materials. This initiative aims to commercialize a novel technology that utilizes Electric Field-Assisted Sintering (EFAS) to embed fiber optic sensors in high-temperature structural materials, facilitating robust real-time structural health monitoring in extreme environments such as nuclear reactors and aerospace applications. The technology, currently at Technology Readiness Level (TRL) 3, has demonstrated successful proof-of-concept experiments and is protected under Provisional Patent Application No. 63/487,327. Interested companies with a proven track record in commercialization are encouraged to contact Andrew Rankin at andrew.rankin@inl.gov for further details on licensing and collaboration opportunities.
    INL Innovation Spotlight Advanced Radiation Monitoring: Fieldable Long-Length Scintillating Fibers
    Active
    Energy, Department Of
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking innovative solutions for advanced radiation monitoring utilizing fieldable long-length scintillating fibers. The objective is to develop a technology that effectively detects and monitors radiation in challenging environments, such as nuclear repositories and medical irradiation facilities, by employing durable scintillating fibers exceeding 10 meters in length, combined with standard optical fibers over 100 meters. This technology addresses significant challenges in radiation monitoring, offering enhanced signal integrity and flexible deployment options essential for the safety and security of sensitive sites. Interested parties can contact Andrew Rankin at andrew.rankin@inl.gov for further information on licensing opportunities and collaboration, as this initiative is not a call for external services or funding.
    LINEAR POWER AMPLIFIERS
    Active
    Energy, Department Of
    The Department of Energy, specifically Fermilab, is seeking proposals for the procurement of linear power amplifiers. This solicitation aims to acquire equipment that is crucial for various experimental development and research activities within the realm of general science and technology. The linear power amplifiers will play a significant role in enhancing the capabilities of scientific experiments conducted at Fermilab in Batavia, Illinois. Interested vendors can reach out to Caylee Swearingen at caylee@fnal.gov for further details regarding the solicitation process and requirements.
    Manufacturing Demonstration Facility: Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies
    Active
    Energy, Department Of
    The Department of Energy, through the Oak Ridge National Laboratory (ORNL), is seeking industry partners for collaborative projects aimed at developing energy-efficient manufacturing technologies within its Manufacturing Demonstration Facility (MDF). The initiative focuses on reducing manufacturing energy intensity and enhancing U.S. competitiveness by inviting proposals from industries engaged in material processing, particularly in advanced manufacturing technologies such as additive manufacturing and carbon fiber composites. Participants must provide at least a 50% cost share, and projects will be evaluated based on technical feasibility, potential for commercialization, and energy savings. Proposals can be submitted via email to MDFcollaboration@ornl.gov, and the submission period remains open, contingent on funding availability from the DOE Advanced Manufacturing Office.
    INL Innovation Spotlight LVDT Intrinsic Temperature Measurement: Revolutionizing Precision Sensing
    Active
    Energy, Department Of
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking innovative solutions for the LVDT Intrinsic Temperature Measurement technology aimed at enhancing precision sensing in material test reactors. This opportunity focuses on the development of a method that utilizes Linear Variable Differential Transformers (LVDTs) to directly measure internal temperatures, thereby improving accuracy and reliability in extreme conditions, particularly for applications in medical, aerospace, and military sectors. The technology is currently at Technology Readiness Level 4, validated in a laboratory environment, and is protected by a US Provisional Patent Application. Interested parties can engage with INL for licensing opportunities and further discussions by contacting Andrew Rankin at andrew.rankin@inl.gov.
    TECHNOLOGY TRANSFER OPPORTUNITY: Laser Linear Frequency Modulation System (LAR-TOPS-95)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the Laser Linear Frequency Modulation System (LAR-TOPS-95). This breakthrough technology improves laser frequency modulation for precision laser radar (lidar) applications. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    Tech Licensing Opportunity: Advanced Feedthrough Assembly Technology for Sealed Environments
    Active
    Energy, Department Of
    The Department of Energy, through the Battelle Energy Alliance, is offering a technology licensing opportunity for an Advanced Feedthrough Assembly Technology designed for sealed environments. This innovative technology aims to enhance the integrity of sealed chambers critical for industrial processes and scientific research, addressing challenges such as leakage due to pressure differentials and seal degradation under extreme conditions. The feedthrough assembly is particularly suited for applications in industrial manufacturing, scientific research, and aerospace and defense, ensuring reliable performance in demanding environments. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further discussions regarding licensing terms and opportunities for collaboration.
    INL Innovation Spotlight Precision Enhancement for Thermocouples: A Leap in Measurement Accuracy
    Active
    Energy, Department Of
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking partnerships to commercialize an innovative technology aimed at enhancing the precision of thermocouples, which are critical for accurate temperature measurement across various industries. This technology utilizes ohmic heating to stabilize thermocouples, significantly improving their accuracy and lifespan while addressing the common issue of accuracy drift, particularly in high-temperature or radiation environments. With applications spanning manufacturing, aerospace, energy production, and healthcare, this advancement represents a significant leap in measurement reliability. Interested parties can learn more about licensing opportunities by contacting Andrew Rankin at andrew.rankin@inl.gov.