TECHNOLOGY/BUSINESS OPPORTUNITY Piezo-driven jetting of powders for controlled packing density
ID: IL-13847Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFLLNS – DOE CONTRACTORLivermore, CA, 94551, USA

NAICS

All Other Industrial Machinery Manufacturing (333248)
Timeline
    Description

    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop a piezo-driven jetting method for additive manufacturing aimed at enhancing controlled packing density of powders. This innovative technology addresses challenges in producing geometrically complex parts with reduced porosity and improved material efficiency, making it applicable for both metal and ceramic powders in various industries, including manufacturing and pharmaceuticals. Interested companies with relevant expertise are encouraged to submit a statement of interest, including company details and capabilities, to LLNL's Innovation and Partnerships Office by contacting Austin Smith or Charlotte Eng via email or phone. This opportunity is not a procurement but a call for industry partners to commercialize the technology, which is currently at Technology Readiness Level 3 and has patent protection filed.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY/BUSINESS OPPORTUNITY Scaled Synthesis of MXenes
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to develop and commercialize a scaled-up chemical synthesis method for MXenes, advanced materials known for their potential in electromagnetic shielding applications. The objective is to enhance the synthesis process, which currently suffers from low yields and variability, by utilizing a novel solution-phase method that achieves over 70% production yield, significantly improving upon traditional methods. MXenes are gaining attention for their lightweight, flexible properties and potential applications in various fields, including electronics, batteries, and water desalination. Interested companies are encouraged to submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence.
    TECHNOLOGY/BUSINESS OPPORTUNITY Simple, Cost-Effective Method for Producing Functional Electro-Optical Materials and Devices
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop and commercialize a Simple, Cost-Effective Method for Producing Functional Electro-Optical Materials and Devices. This initiative aims to address the need for low-cost fabrication strategies for functional devices with tailored properties, particularly in optical applications such as deep UV photodetectors and flexible sensors. The technology involves innovative material transformations, allowing for the creation of semiconducting oxides from conductive metals in a single step, thereby streamlining the manufacturing process. Interested companies are encouraged to submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by following the specified guidelines. For further inquiries, contact Alex Hess at hess12@llnl.gov or Charlotte Eng at eng23@llnl.gov.
    TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements The Department of Energy is seeking a technology licensing opportunity for Green 3D Electrodeposition (G3DED), a groundbreaking approach to fabricate high-performance metal fuels. This technology combines green electrodeposition with 3D manufacturing, ensuring efficiency, reduced contamination, and cost-effectiveness. Traditionally, metal fuel fabrication has relied on high-temperature processes, which often lead to contamination and waste. While 3D printing brought innovation, it introduced challenges in nuclear applications. The G3DED technology addresses these issues by harnessing the benefits of green electrodeposition in ionic liquid electrolytes and integrating it with advanced 3D manufacturing techniques. The G3DED technology allows for the fabrication of metallic fuels at room or slightly elevated temperatures, optimizing fuel composition and microstructures. It offers significant reductions in contamination and waste, versatility in using different starting materials, and potential cost savings due to process simplification. The technology is scalable and designed to meet diverse application needs. Potential applications of G3DED include fabrication of nuclear fuels and components, corrosion prevention, processing of new fuels, spent fuels, and nuclear wastes. It also has potential applications in the production of lightweight materials like aluminum and titanium alloys, manufacturing of battery materials, electrodes, and devices, and electrochemical dissolution of noble metals for etching and machining. The G3DED technology is currently at Technology Readiness Level (TRL) 2, with a technology concept and/or application formulated. It is protected by a US Patent Application (No. 17/309,574) managed by Battelle Energy Alliance, LLC. The Idaho National Laboratory (INL) is eager to form commercial collaborations and license the intellectual property to organizations proficient in bringing innovations to the market, particularly small businesses and start-ups. For further inquiries and collaboration opportunities, please contact Andrew Rankin at td@inl.gov. More information about collaborating with INL can be found at https://inl.gov/inl-initiatives/technology-deployment.
    TECHNOLOGY/BUSINESS OPPORTUNITY Recyclable Polyurethanes
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop a novel process for the chemical degradation of polyurethane plastics. This initiative aims to address the challenges associated with recycling polyurethanes, which currently have low recycling rates and economic viability due to difficulties in reprocessing. The LLNL researchers have developed a method utilizing functional alcohols that significantly enhances depolymerization efficiency, allowing for the complete breakdown of crosslinked polyurethane networks into liquid oligomers within 48 hours at ambient temperature, with potential applications in polyurethane recycling and 3D printing. Interested companies are encouraged to submit a statement of interest, including their corporate expertise and contact information, to the Innovation and Partnerships Office at LLNL by email or written correspondence, with further details available on their website.
    Licensing Opportunity: Limited Center Constraint of Optimal Thickness Build Substrates for Additive Manufacturing
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a technology titled "Limited Center Constraint of Optimal Thickness Build Substrates for Additive Manufacturing," developed by ORNL UT-Battelle LLC. This innovative method addresses significant challenges in additive manufacturing, specifically focusing on substrate design and fixturing to minimize residual stress, distortion, and cracking during the printing process. The technology is applicable across various industries, including aerospace, automotive, and composite manufacturing, ensuring that the final machined part remains intact despite substrate distortion. Interested parties can contact Alex DeTrana at detranaag@ornl.gov or call 865-341-0423 for further information regarding this opportunity.
    Tech Licensing Opportunity: Electric Field Assisted Sintering of Bimetallic Materials
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a Tech Licensing Opportunity for Electric Field Assisted Sintering of Bimetallic Materials. This innovative method allows for the joining of dissimilar metals through electric field assisted sintering, providing a superior alternative to traditional welding techniques. The technology is particularly useful in industries such as aerospace, heat transfer, and manufacturing, where combining dissimilar materials is crucial. It enables the fusion of materials like aluminum and stainless steel without the limitations of traditional connectors. This method offers advantages such as efficient joining of dissimilar materials, reduced need for bulky mechanical fasteners, precise control over pressure and temperature, elimination of consumable materials, and a more environmentally friendly and safer approach compared to traditional welding methods. It solves challenges in bonding dissimilar materials, reduces cost and complexity in bimetallic fabrication, overcomes limitations in shape and batch size, and addresses galvanic corrosion issues. The market applications include joining aluminum to stainless steel pipes, aerospace industry applications, heat transfer applications, and heating and cooling coil manufacturing. The technology is currently at TRL 5 and has a provisional patent application. Interested parties can contact td@inl.gov for further information.
    TECHNOLOGY LICENSING OPPORTUNITY Enhanced Stability for Li Metal Batteries with Molybdenum Decorated Collectors
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a Technology Licensing Opportunity for the Fabrication of Complex Microchannels using Co-Sintering. This technology offers a hybrid co-sintering process with 3D printing and chemical processing, allowing for superior microstructural control, simplified component processing, and novel coatings control in embedded microchannels. The service/item being procured is typically used for the development of anode-free rechargeable lithium batteries with improved cycling performance and significantly increased energy density. The technology utilizes a molybdenum-based current collector at the anode side, which induces uniform Li plating/stripping morphologies with reduced overpotential, suppressing dendrite growth and dead Li formation. This scalable process uses commercially available sputtering technology and is currently at Technology Readiness Level 2, requiring proof-of-concept work. Interested parties can partner with Idaho National Laboratory (INL) for access to this pioneering technology and mutual growth. For more information, please contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology titled "Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope." This innovative method allows for the precise control and placement of atomic defects in materials, significantly enhancing applications in quantum photonics, magnetic storage, and catalysis, while overcoming limitations of traditional scanning tunneling microscopes. The technology is applicable to both 2D and 3D materials, enabling scalable atomic-scale manufacturing without damaging the material's atomic content. Interested parties can learn more about this opportunity by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    Manufacturing Demonstration Facility: Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies
    Active
    Energy, Department Of
    The Department of Energy, through the Oak Ridge National Laboratory (ORNL), is seeking industry partners for collaborative projects aimed at developing energy-efficient manufacturing technologies within its Manufacturing Demonstration Facility (MDF). The initiative focuses on reducing manufacturing energy intensity and enhancing U.S. competitiveness by inviting proposals from industries engaged in material processing, particularly in advanced manufacturing technologies such as additive manufacturing and carbon fiber composites. Participants must provide at least a 50% cost share, and projects will be evaluated based on technical feasibility, potential for commercialization, and energy savings. Proposals can be submitted via email to MDFcollaboration@ornl.gov, and the submission period remains open, contingent on funding availability from the DOE Advanced Manufacturing Office.
    Tech Licensing Opportunity: Advanced Bonding Method for Heterogeneous Systems
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking an advanced bonding method for heterogeneous systems. This method aims to seamlessly bond similar and dissimilar materials, maintaining grain structure to minimize disruptions at the bond interface and enhancing material properties and integrity. The method has been demonstrated using Electric Field Assisted Sintering (EFAS) technologies and offers versatility across different manufacturing contexts. It eliminates the use of interlayers or powders, reducing material costs and complexity in the bonding process. The technology has applications in electronics manufacturing, nuclear industry, aerospace industry, ceramics manufacturing, and development of composite materials. The development status is TRL 6. For more information, visit https://inl.gov/technology-deployment/. Contact td@inl.gov for specific discussions on how your business can benefit from this licensing opportunity.