TECHNOLOGY/BUSINESS OPPORTUNITY Simple, Cost-Effective Method for Producing Functional Electro-Optical Materials and Devices
ID: IL-13557Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFLLNS – DOE CONTRACTORLivermore, CA, 94551, USA

NAICS

All Other Industrial Machinery Manufacturing (333248)
Timeline
    Description

    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop and commercialize a Simple, Cost-Effective Method for Producing Functional Electro-Optical Materials and Devices. This initiative aims to address the need for low-cost fabrication strategies for functional devices with tailored properties, particularly in optical applications such as deep UV photodetectors and flexible sensors. The technology involves innovative material transformations, allowing for the creation of semiconducting oxides from conductive metals in a single step, thereby streamlining the manufacturing process. Interested companies are encouraged to submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by following the specified guidelines. For further inquiries, contact Alex Hess at hess12@llnl.gov or Charlotte Eng at eng23@llnl.gov.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY/BUSINESS OPPORTUNITY Scaled Synthesis of MXenes
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to develop and commercialize a scaled-up chemical synthesis method for MXenes, advanced materials known for their potential in electromagnetic shielding applications. The objective is to enhance the synthesis process, which currently suffers from low yields and variability, by utilizing a novel solution-phase method that achieves over 70% production yield, significantly improving upon traditional methods. MXenes are gaining attention for their lightweight, flexible properties and potential applications in various fields, including electronics, batteries, and water desalination. Interested companies are encouraged to submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence.
    TECHNOLOGY/BUSINESS OPPORTUNITY Piezo-driven jetting of powders for controlled packing density
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop a piezo-driven jetting method for additive manufacturing aimed at enhancing controlled packing density of powders. This innovative technology addresses challenges in producing geometrically complex parts with reduced porosity and improved material efficiency, making it applicable for both metal and ceramic powders in various industries, including manufacturing and pharmaceuticals. Interested companies with relevant expertise are encouraged to submit a statement of interest, including company details and capabilities, to LLNL's Innovation and Partnerships Office by contacting Austin Smith or Charlotte Eng via email or phone. This opportunity is not a procurement but a call for industry partners to commercialize the technology, which is currently at Technology Readiness Level 3 and has patent protection filed.
    Licensing Opportunity: Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology titled "Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope." This innovative method allows for the precise control and placement of atomic defects in materials, significantly enhancing applications in quantum photonics, magnetic storage, and catalysis, while overcoming limitations of traditional scanning tunneling microscopes. The technology is applicable to both 2D and 3D materials, enabling scalable atomic-scale manufacturing without damaging the material's atomic content. Interested parties can learn more about this opportunity by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    TECHNOLOGY/BUSINESS OPPORTUNITY Recyclable Polyurethanes
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop a novel process for the chemical degradation of polyurethane plastics. This initiative aims to address the challenges associated with recycling polyurethanes, which currently have low recycling rates and economic viability due to difficulties in reprocessing. The LLNL researchers have developed a method utilizing functional alcohols that significantly enhances depolymerization efficiency, allowing for the complete breakdown of crosslinked polyurethane networks into liquid oligomers within 48 hours at ambient temperature, with potential applications in polyurethane recycling and 3D printing. Interested companies are encouraged to submit a statement of interest, including their corporate expertise and contact information, to the Innovation and Partnerships Office at LLNL by email or written correspondence, with further details available on their website.
    Licensing Opportunity: Real-Time, Rapid and Noninvasive Atomic Lock-On in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology that enables real-time, rapid, and non-invasive atomic lock-on in scanning transmission electron microscopes (STEM). This innovative procedure allows for ultra-precise targeting of individual atoms with a precision below 20 picometers, significantly enhancing the capabilities of STEM by automating beam experiments and minimizing human error. The technology is particularly relevant for applications in semiconductor manufacturing and materials research, providing benefits such as non-invasiveness, speed, and high precision. Interested parties can learn more about this opportunity by contacting partnerships@ornl.gov or calling 865-574-1051.
    TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials The Department of Energy is offering a technology licensing opportunity for embedded fiber optic sensors in high-temperature materials. This technology utilizes Electric Field-Assisted Sintering (EFAS) to embed fiber optic sensors in high-temperature structural materials for real-time structural health monitoring in extreme environments. It is typically used for real-time monitoring in high-temperature, high-pressure, and radioactive environments, making it crucial for ensuring the integrity and safety of components in industries such as nuclear reactors, aerospace, and high-temperature industrial settings. The technology has undergone testing to verify the integrity and functionality of the embedded fiber and the quality of the bond between the fiber and the metallic matrix. Benefits include achieving successful real-time monitoring, improving bond quality, ensuring scalability, and minimizing signal loss. Applications include nuclear reactor monitoring, aerospace components, automotive systems, energy production infrastructure, and biomedical engineering. The technology is at a Technology Readiness Level (TRL) 3, with key proof-of-concept experiments and parameter optimizations already completed. Interested companies should contact Andrew Rankin at td@inl.gov for more information on this licensing opportunity.
    Licensing Opportunity: Apparatus and Method for Microwave Carbonization of Polymeric Materials for Carbon Fiber Production
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for an innovative apparatus and method for the microwave carbonization of polymeric materials aimed at carbon fiber production. This technology utilizes near-field electromagnetic treatment combined with a susceptor system in a resonant cavity, providing a more efficient alternative to conventional high-temperature carbonization processes that typically require large furnaces and significant energy input. The new method promises to save time and energy, reduce processing costs, and minimize the physical footprint of production facilities, making it particularly beneficial for the carbon fiber manufacturing industry. Interested parties can learn more about this technology by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    Licensing Opportunity: Cross-Facility Orchestration for Electrochemistry Experiments and Computations
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a technology designed to enhance electrochemistry experiments through cross-facility orchestration. This innovative solution involves the design and development of hardware and software that supports autonomous chemistry workflows, enabling real-time measurement transfer and analysis on high-performance computing systems, thereby addressing the limitations of manual testing. The technology is applicable across various fields, including isotope production, battery testing, and analytical chemistry, and aims to automate workflows, improve productivity, and minimize errors. For further information, interested parties can contact Leslie Smith at smithlm@ornl.gov or call 865-341-0373.
    TECHNOLOGY LICENSING OPPORTUNITY Solid State Nuclear Lasing Sensors: Revolutionizing In-Pile Reactor Measurements
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Solid State Nuclear Lasing Sensors. These sensors revolutionize in-pile reactor measurements by enhancing accuracy and spatial resolution. Traditional nuclear reactor power measurement methods have limitations in spatial resolution and potential inaccuracies. This groundbreaking technology utilizes solid state lasing media/crystals to produce laser light, which directly correlates with reactor power and radiation flux. The sensors can be strategically placed within the reactor for real-time power/flux distribution measurements. The technology has applications in commercial nuclear power plants, micro nuclear reactors, and space power and nuclear thermal propulsion reactors. The development status is at TRL 3 - Analytical and experimental proof-of-concept. For more information and collaboration opportunities, please contact Andrew Rankin at td@inl.gov.
    TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements The Department of Energy is seeking a technology licensing opportunity for Green 3D Electrodeposition (G3DED), a groundbreaking approach to fabricate high-performance metal fuels. This technology combines green electrodeposition with 3D manufacturing, ensuring efficiency, reduced contamination, and cost-effectiveness. Traditionally, metal fuel fabrication has relied on high-temperature processes, which often lead to contamination and waste. While 3D printing brought innovation, it introduced challenges in nuclear applications. The G3DED technology addresses these issues by harnessing the benefits of green electrodeposition in ionic liquid electrolytes and integrating it with advanced 3D manufacturing techniques. The G3DED technology allows for the fabrication of metallic fuels at room or slightly elevated temperatures, optimizing fuel composition and microstructures. It offers significant reductions in contamination and waste, versatility in using different starting materials, and potential cost savings due to process simplification. The technology is scalable and designed to meet diverse application needs. Potential applications of G3DED include fabrication of nuclear fuels and components, corrosion prevention, processing of new fuels, spent fuels, and nuclear wastes. It also has potential applications in the production of lightweight materials like aluminum and titanium alloys, manufacturing of battery materials, electrodes, and devices, and electrochemical dissolution of noble metals for etching and machining. The G3DED technology is currently at Technology Readiness Level (TRL) 2, with a technology concept and/or application formulated. It is protected by a US Patent Application (No. 17/309,574) managed by Battelle Energy Alliance, LLC. The Idaho National Laboratory (INL) is eager to form commercial collaborations and license the intellectual property to organizations proficient in bringing innovations to the market, particularly small businesses and start-ups. For further inquiries and collaboration opportunities, please contact Andrew Rankin at td@inl.gov. More information about collaborating with INL can be found at https://inl.gov/inl-initiatives/technology-deployment.