TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials
ID: BA-1481Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFBATTELLE ENERGY ALLIANCE–DOE CNTRIdaho Falls, ID, 83415, USA

PSC

EQUIPMENT AND MATERIALS TESTING- NUCLEAR ORDNANCE (H211)
Timeline
    Description

    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials

    The Department of Energy is offering a technology licensing opportunity for embedded fiber optic sensors in high-temperature materials. This technology utilizes Electric Field-Assisted Sintering (EFAS) to embed fiber optic sensors in high-temperature structural materials for real-time structural health monitoring in extreme environments. It is typically used for real-time monitoring in high-temperature, high-pressure, and radioactive environments, making it crucial for ensuring the integrity and safety of components in industries such as nuclear reactors, aerospace, and high-temperature industrial settings. The technology has undergone testing to verify the integrity and functionality of the embedded fiber and the quality of the bond between the fiber and the metallic matrix. Benefits include achieving successful real-time monitoring, improving bond quality, ensuring scalability, and minimizing signal loss. Applications include nuclear reactor monitoring, aerospace components, automotive systems, energy production infrastructure, and biomedical engineering. The technology is at a Technology Readiness Level (TRL) 3, with key proof-of-concept experiments and parameter optimizations already completed. Interested companies should contact Andrew Rankin at td@inl.gov for more information on this licensing opportunity.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY LICENSING OPPORTUNITY Process for In-Situ Electric Field Assisted Sintering Quality Control
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Process for In-Situ Electric Field Assisted Sintering Quality Control The Department of Energy is offering a technology licensing opportunity for a process that enables precision and efficiency in manufacturing and delivers unprecedented quality control for Electric Field Assisted Sintering (EFAS) processes. EFAS is a rapid heating process used for consolidating powder materials, but it can lead to local density variations within the sintered materials. This technology offers a non-destructive method for measuring localized porosity changes in EFAS materials, providing a valuable tool for enhancing quality control and overall efficiency. Researchers at Idaho National Laboratory have developed an approach that employs photothermal radiometry to measure the local thermal diffusivity of EFAS sintered materials, which directly correlates to localized percent porosities. This technology simplifies the measurement approach, providing accurate, non-destructive local density readings. The licensing opportunity is open to companies interested in commercializing this technology and contributing to improving EFAS quality control and accelerating product development. For more information, please contact Andrew Rankin at td@inl.gov.
    TECHNOLOGY LICENSING OPPORTUNITY Solid State Nuclear Lasing Sensors: Revolutionizing In-Pile Reactor Measurements
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Solid State Nuclear Lasing Sensors. These sensors revolutionize in-pile reactor measurements by enhancing accuracy and spatial resolution. Traditional nuclear reactor power measurement methods have limitations in spatial resolution and potential inaccuracies. This groundbreaking technology utilizes solid state lasing media/crystals to produce laser light, which directly correlates with reactor power and radiation flux. The sensors can be strategically placed within the reactor for real-time power/flux distribution measurements. The technology has applications in commercial nuclear power plants, micro nuclear reactors, and space power and nuclear thermal propulsion reactors. The development status is at TRL 3 - Analytical and experimental proof-of-concept. For more information and collaboration opportunities, please contact Andrew Rankin at td@inl.gov.
    INL Innovation Spotlight LVDT Intrinsic Temperature Measurement: Revolutionizing Precision Sensing
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF INL Innovation Spotlight LVDT Intrinsic Temperature Measurement: Revolutionizing Precision Sensing The Department of Energy is seeking innovative solutions for precision sensing in material test reactors. The LVDT Intrinsic Temperature Measurement method improves accuracy by directly sensing internal temperatures, eliminating the need for external thermocouples. This breakthrough technology provides precise and real-time temperature data, enhancing measurement accuracy in irradiation tests and other applications. It also simplifies sensor assembly and improves performance in extreme environments. The benefits include increased measurement accuracy, reduced complexity, improved performance in high-temperature scenarios, and long-term stability. The applications range from medical equipment and manufacturing to aerospace and military systems. The technology is currently at TRL 4 and has a provisional patent application. Interested businesses can engage with INL Tech Partnerships for licensing opportunities and support. For more information, contact Andrew Rankin at td@inl.gov.
    Tech Licensing Opportunity: Synthesis of Tungsten Tetraboride (WB4) by Electric Field Assisted Sintering (EFAS)
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF: Tech Licensing Opportunity: Synthesis of Tungsten Tetraboride (WB4) by Electric Field Assisted Sintering (EFAS) This federal procurement notice is seeking a licensing opportunity for the synthesis of Tungsten Tetraboride (WB4) using Electric Field Assisted Sintering (EFAS). Tungsten Tetraboride is a material known for its exceptional hardness and thermal properties. EFAS is a modern technique that revolutionizes the production of WB4 by maintaining precise conditions necessary for optimal material characteristics. The traditional methods of synthesizing WB4, such as arc melting, often result in impurities and unwanted phases. EFAS overcomes these limitations by employing controlled sintering temperatures and accurate atomic ratios without the need to melt the components. This process ensures the production of WB4 with minimal impurities and maximum hardness. The advantages of this licensing opportunity include enhanced material quality, scalability for larger batches and custom sizes, cost-effectiveness through the use of less expensive raw materials, and radiation resistance suitable for nuclear applications. The problems solved by this opportunity include inconsistent synthesis quality and low yield of WB4 using traditional methods, high cost and complexity of large-scale production of similar materials, and the lack of cost-effective and efficient materials for extreme thermal environments and radiation shielding. The market applications for this technology include enhancing the longevity and performance of machining tools in automotive and aerospace manufacturing, providing lighter and more effective armor for defense and ballistic protection, and improving the safety and efficiency of nuclear reactors. The development status of this technology is at TRL 3, and there is a US Provisional Patent Application in progress. Interested parties can learn more about this licensing opportunity and the support provided by contacting td@inl.gov or visiting https://inl.gov/technology-deployment/.
    Tech Licensing Opportunity: Advanced Bonding Method for Heterogeneous Systems
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking an advanced bonding method for heterogeneous systems. This method aims to seamlessly bond similar and dissimilar materials, maintaining grain structure to minimize disruptions at the bond interface and enhancing material properties and integrity. The method has been demonstrated using Electric Field Assisted Sintering (EFAS) technologies and offers versatility across different manufacturing contexts. It eliminates the use of interlayers or powders, reducing material costs and complexity in the bonding process. The technology has applications in electronics manufacturing, nuclear industry, aerospace industry, ceramics manufacturing, and development of composite materials. The development status is TRL 6. For more information, visit https://inl.gov/technology-deployment/. Contact td@inl.gov for specific discussions on how your business can benefit from this licensing opportunity.
    TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements The Department of Energy is seeking a technology licensing opportunity for Green 3D Electrodeposition (G3DED), a groundbreaking approach to fabricate high-performance metal fuels. This technology combines green electrodeposition with 3D manufacturing, ensuring efficiency, reduced contamination, and cost-effectiveness. Traditionally, metal fuel fabrication has relied on high-temperature processes, which often lead to contamination and waste. While 3D printing brought innovation, it introduced challenges in nuclear applications. The G3DED technology addresses these issues by harnessing the benefits of green electrodeposition in ionic liquid electrolytes and integrating it with advanced 3D manufacturing techniques. The G3DED technology allows for the fabrication of metallic fuels at room or slightly elevated temperatures, optimizing fuel composition and microstructures. It offers significant reductions in contamination and waste, versatility in using different starting materials, and potential cost savings due to process simplification. The technology is scalable and designed to meet diverse application needs. Potential applications of G3DED include fabrication of nuclear fuels and components, corrosion prevention, processing of new fuels, spent fuels, and nuclear wastes. It also has potential applications in the production of lightweight materials like aluminum and titanium alloys, manufacturing of battery materials, electrodes, and devices, and electrochemical dissolution of noble metals for etching and machining. The G3DED technology is currently at Technology Readiness Level (TRL) 2, with a technology concept and/or application formulated. It is protected by a US Patent Application (No. 17/309,574) managed by Battelle Energy Alliance, LLC. The Idaho National Laboratory (INL) is eager to form commercial collaborations and license the intellectual property to organizations proficient in bringing innovations to the market, particularly small businesses and start-ups. For further inquiries and collaboration opportunities, please contact Andrew Rankin at td@inl.gov. More information about collaborating with INL can be found at https://inl.gov/inl-initiatives/technology-deployment.
    TECHNOLOGY LICENSING OPPORTUNITY Novel Ablation Chamber Design Enabling Repeat Use
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Novel Ablation Chamber Design Enabling Repeat Use The Department of Energy is offering a technology licensing opportunity for a novel ablation chamber design that enables repeat use. This new ablation chamber is specifically designed for nuclear samples and addresses the issue of cross-contamination and the need for a new chamber after each use. The chamber allows for multiple samples to be housed simultaneously, without cross-contamination, through a unique chamber design and the use of liners. These liners can be fabricated from inexpensive materials like aluminum and can house up to 6 samples. The chamber is leak-tight and provides shielding for workers. It also includes a small motor to rotate the samples without opening the chamber. The benefits of this technology include the ability to work with multiple samples at once without cross-contamination, significant cost-savings due to the use of disposable liners, increased overall throughput three-fold, and the ability to shield samples. The ablation chamber is currently at TRL 4 and has been validated in a laboratory environment. The Department of Energy is seeking to license this intellectual property to a company with a demonstrated ability to bring such inventions to the market. Exclusive rights in defined fields of use may be available. Small businesses, start-up companies, and general entrepreneurship opportunities are encouraged to apply. For more information on working with the Department of Energy and the technology transfer process, interested companies can visit the Technology Deployment website. Interested companies should contact Andrew Rankin at td@inl.gov for more information on this licensing opportunity.
    TECHNOLOGY LICENSING OPPORTUNITY Continuous Electric-Field Assisted Sintering (CEFAS) System
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is offering a technology licensing opportunity for a Continuous Electric-Field Assisted Sintering (CEFAS) System. This system revolutionizes traditional EFAS manufacturing by introducing a continuous processing method. It eliminates limitations on part length, significantly reduces processing time and energy consumption, and enables seamless industrial scale-up. The CEFAS system is ideal for material processing companies requiring sintering solutions, industries where scale-up and time efficiency are critical, and manufacturing processes requiring specialized part geometries. The technology is at a Technology Readiness Level (TRL) 4-5 with some validation work done in the laboratory. Interested companies should contact Andrew Rankin at td@inl.gov for more information on this licensing opportunity.
    INL Innovation Spotlight Precision Enhancement for Thermocouples: A Leap in Measurement Accuracy
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF is seeking Precision Enhancement for Thermocouples. Thermocouples are widely used for temperature measurement in various industries but suffer from accuracy drift over time, especially under high temperatures or radiation. The Idaho National Laboratory (INL) has developed a groundbreaking method to extend the lifespan and accuracy of thermocouples by introducing a precise method of short-range ordering (SRO) on thermocouple wires through ohmic heating. This technology improves the accuracy and lifespan of thermocouples, ensuring high precision in temperature measurement over an extended period. It also reduces the need for frequent replacements, offers a faster calibration process, and can be retroactively applied to existing thermocouples in the field. This innovation has applications in manufacturing, aerospace, energy production, scientific research, healthcare, and pharmaceutical manufacturing. The technology has completed testing and demonstration and is currently at TRL 8. INL offers licensing opportunities for businesses interested in this technology. For more information, contact Andrew Rankin at td@inl.gov.
    Tech Licensing Opportunity: Electric Field Assisted Sintering of Bimetallic Materials
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a Tech Licensing Opportunity for Electric Field Assisted Sintering of Bimetallic Materials. This innovative method allows for the joining of dissimilar metals through electric field assisted sintering, providing a superior alternative to traditional welding techniques. The technology is particularly useful in industries such as aerospace, heat transfer, and manufacturing, where combining dissimilar materials is crucial. It enables the fusion of materials like aluminum and stainless steel without the limitations of traditional connectors. This method offers advantages such as efficient joining of dissimilar materials, reduced need for bulky mechanical fasteners, precise control over pressure and temperature, elimination of consumable materials, and a more environmentally friendly and safer approach compared to traditional welding methods. It solves challenges in bonding dissimilar materials, reduces cost and complexity in bimetallic fabrication, overcomes limitations in shape and batch size, and addresses galvanic corrosion issues. The market applications include joining aluminum to stainless steel pipes, aerospace industry applications, heat transfer applications, and heating and cooling coil manufacturing. The technology is currently at TRL 5 and has a provisional patent application. Interested parties can contact td@inl.gov for further information.