Quantum Enhanced RF Components
ID: A244-012Type: BOTH
Overview

Topic

Quantum Enhanced RF Components

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems.

    The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software.

    The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles.

    The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Tactical Implementation of Quantum Hardening
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Tactical Implementation of Quantum Hardening" as part of its SBIR program. The objective is to develop a tactical implementation of quantum hardening for Army systems on a tactical network to identify vulnerabilities, remove or remediate them, and maintain security against quantum cyber threats. The Army is interested in software that can aid in future-proofing Army networks related to quantum computing vulnerabilities. The performer will prototype a representative software suite at technology readiness level 6, demonstrated in relevant environments. The ideal solution is a holistic suite of quantum-resistant security applications that can help organizations assess their cryptographic security posture, implement quantum-resistant cryptographic algorithms, and provide a crypto-agile framework to protect sensitive data from adversarial quantum computer attacks. The project will be conducted in two phases, with the second phase involving the development, building, and demonstration of a prototype. The performer will have access to a lab with tactical network capabilities and associated devices for iteration. A final demonstration will be conducted at NetModX 2025. Awardees may also be eligible for a Phase IIb award after completion of Phase II. The objective of Phase III is for the small business to pursue commercialization objectives through system-level integration and prototype demonstration. The topic is restricted under ITAR and EAR regulations. The deadline for proposal submission is March 31, 2025. For more information, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Tactical Implementation of Quantum Hardening
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Tactical Implementation of Quantum Hardening" as part of its SBIR program. The objective is to develop a tactical implementation of quantum hardening for Army systems on a tactical network to identify vulnerabilities, remove or remediate them, and maintain security against quantum cyber threats. The Army is interested in software that can future-proof Army networks related to quantum computing vulnerabilities. The ideal solution is a holistic suite of quantum-resistant security applications that can assess cryptographic security, implement quantum-resistant algorithms, and provide a crypto-agile framework to protect sensitive data. The project will involve analyzing Army networks, prioritizing critical networks, and transitioning to a quantum-safe architecture. The performer will prototype a software suite at technology readiness level 6, demonstrated in relevant environments. The project will have a Phase I and Phase II, with Phase II delivering a prototype for further Army evaluation. The performer will have access to a lab with tactical network capabilities and associated devices for iteration. The project will also include demonstrations at NetModX events in 2024 and 2025. Awardees may be eligible for a Phase IIb award after completing Phase II. Phase III will focus on commercialization objectives. The project is open for proposals until March 31, 2025. For more information, visit the solicitation agency URL: link.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD SBIR 24.4 Annual - Software Defined RadioHead (SDRH)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Software Defined RadioHead (SDRH)" as part of their SBIR 24.4 Annual solicitation. The objective is to develop a radio agnostic SDRH system that can rapidly adapt the radio carrier frequency among diverse targeted frequency bands using analog and/or digital frequency conversion. This technology will provide additional flexibility to the commander's communication plan. The SDRH design will be a flexible antenna prototype capable of supporting multiple frequencies and radio modules, complementing the C5ISR/CMOSS standard's objective for agnostic hardware. The solicitation is open for Direct to Phase II (DP2) proposals with a maximum cost of $2,000,000 for a 12-month period of performance. Phase II will involve developing a prototype SDRH for evaluation and testing by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center. The solicitation also highlights potential dual-use applications of SDRH technology in industries such as IoT, UAVs, smart cities, and mobile communications. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link or the DOD SBIR/STTR Opportunities website.
    DOD STTR 24.D Annual - Optical-Atomic System Integration & Calibration (OASIC)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Optical-Atomic System Integration & Calibration (OASIC)" as part of the Small Business Innovation Research (SBIR) program. The objective is to create a user facility for an atom-based quantum testbed that can prototype, validate, and benchmark nanophotonic, optoelectronic, and electronic components and sub-systems. The goal is to enable the development of scalable, low-SWaP atom-based quantum sensors, clocks, computing architectures, and other integrated or chip-scale quantum technologies. The solicitation emphasizes the need for rigorous testing and evaluation procedures compatible with the performance requirements of atom-based quantum devices. The Phase I of the project will focus on designing and analyzing the performance and operation of the proposed testbed user facility, as well as developing an operation and business plan. The Phase II will involve constructing and demonstrating the quantum testbed based on the Phase I design. The project duration for Phase I is 4 months, and for Phase II is 24 months. The solicitation encourages the development of integrated, low-SWaP quantum systems for applications in defense and commercial markets. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Development of novel 5G Open RAN (Radio Access Networks) xApp and rApp Applications Open Topic
    Active
    Department of Defense
    The Department of Defense (DoD) is seeking proposals for the development of novel 5G Open RAN (Radio Access Networks) xApp and rApp applications. The focus of this solicitation is on security and security-related network measurement. The DoD anticipates increasing reliance on 5G and FutureG OpenRAN networks and needs tools and techniques to enhance the security and resilience of these networks. The primary use case is in support of DoD network operators, owners, and users who depend on reliable and trustworthy network communications for various DoD missions. The development and deployment of xApps and rApps within the OpenRAN framework represent an opportunity to significantly improve the security of 5G networks. These applications can provide detailed insights into network performance and security metrics, enabling a better understanding of the network's security posture and helping to mitigate potential attacks. Proposed solutions should focus on expanding the capabilities of xApps and rApps to address emerging threats and enhance scalability and efficiency. The Phase I of the project involves presenting a design for at least one high-quality xApp or rApp idea, with a duration of six months. The Phase II, lasting twelve months, focuses on prototype production, test, and evaluation. Phase III will be determined on an as-needed basis to address additional capability development or transition to operational use. The evaluation of proposed solutions will consider factors such as overall impact, false positive/false negative rate, complexity of the operational problem, vulnerability identification rate, adaptability to evolving landscape, policy/regulatory compliance, and adherence to established standards and protocols. For more information and to submit proposals, visit the solicitation agency's website at [solicitationagencyurl]. The application due date is March 31, 2025.
    DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - Novel Positioning, Navigation, and Timing (PNT) Signal Classification Techniques
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a novel positioning, navigation, and timing (PNT) signal classification techniques. The purpose of this solicitation is to develop the capability to classify signals in real-time that impact navigation systems. The goal is to better understand the type of signals experienced in relevant environments to apply appropriate mitigation techniques. The current navigation systems depend on radio frequency (RF) signals that can be influenced by various interference sources. The challenge is to quickly understand the signal characteristics to react and mitigate negative impacts. The proposed solution aims to build upon AI/Machine Learning (ML) algorithm technologies to perform PNT signal classification in real-time. The project will involve developing two antenna systems capable of detecting and classifying interference signals, collecting relevant signals for training the AI/ML solution, and demonstrating the ability to detect and identify signal types in a relevant environment. The project will have a Phase I and Phase II, with Phase II focusing on the development and demonstration of the antenna systems. The anticipated duration of the project is until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR website.