Quantum Enhanced RF Components
ID: A244-012Type: BOTH
Overview

Topic

Quantum Enhanced RF Components

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Oct 3, 2023 12:00 AM
  2. 2
    Open Oct 3, 2023 12:00 AM
  3. 3
    Next Submission Due Mar 31, 2025 12:00 AM
  4. 4
    Close Mar 31, 2025 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems.

The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software.

The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles.

The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Tactical Implementation of Quantum Hardening
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Tactical Implementation of Quantum Hardening" as part of its SBIR program. The objective is to develop a tactical implementation of quantum hardening for Army systems on a tactical network to identify vulnerabilities, remove or remediate them, and maintain security against quantum cyber threats. The Army is interested in software that can aid in future-proofing Army networks related to quantum computing vulnerabilities. The performer will prototype a representative software suite at technology readiness level 6, demonstrated in relevant environments. The ideal solution is a holistic suite of quantum-resistant security applications that can help organizations assess their cryptographic security posture, implement quantum-resistant cryptographic algorithms, and provide a crypto-agile framework to protect sensitive data from adversarial quantum computer attacks. The project will be conducted in two phases, with the second phase involving the development, building, and demonstration of a prototype. The performer will have access to a lab with tactical network capabilities and associated devices for iteration. A final demonstration will be conducted at NetModX 2025. Awardees may also be eligible for a Phase IIb award after completion of Phase II. The objective of Phase III is for the small business to pursue commercialization objectives through system-level integration and prototype demonstration. The topic is restricted under ITAR and EAR regulations. The deadline for proposal submission is March 31, 2025. For more information, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Tactical Implementation of Quantum Hardening
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Tactical Implementation of Quantum Hardening" as part of its SBIR program. The objective is to develop a tactical implementation of quantum hardening for Army systems on a tactical network to identify vulnerabilities, remove or remediate them, and maintain security against quantum cyber threats. The Army is interested in software that can future-proof Army networks related to quantum computing vulnerabilities. The ideal solution is a holistic suite of quantum-resistant security applications that can assess cryptographic security, implement quantum-resistant algorithms, and provide a crypto-agile framework to protect sensitive data. The project will involve analyzing Army networks, prioritizing critical networks, and transitioning to a quantum-safe architecture. The performer will prototype a software suite at technology readiness level 6, demonstrated in relevant environments. The project will have a Phase I and Phase II, with Phase II delivering a prototype for further Army evaluation. The performer will have access to a lab with tactical network capabilities and associated devices for iteration. The project will also include demonstrations at NetModX events in 2024 and 2025. Awardees may be eligible for a Phase IIb award after completing Phase II. Phase III will focus on commercialization objectives. The project is open for proposals until March 31, 2025. For more information, visit the solicitation agency URL: [link](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Portable Diamond NV-Based Quantum Magnetometer for Enhanced Detection of Person-Borne Improvised Explosive Devices (PBIEDs)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a portable Diamond Nitrogen-Vacancy (NV) Center-based Quantum Magnetometer for enhanced detection of Person-Borne Improvised Explosive Devices (PBIEDs). Quantum magnetometers utilizing Diamond NV technology offer significant advancements in sensitivity and precision for detecting minor fluctuations in magnetic fields. The magnetometers provide benefits such as exceptional sensitivity, robustness, durability, and non-invasive detection. However, challenges include manufacturing complexity, cost, false positives in metal-rich environments, and limitations in detection range and depth. The solicitation invites proposals for designing a portable Diamond NV-based Quantum Magnetometer that addresses these challenges and demonstrates a thorough understanding of operational contexts. The project will be conducted in three phases: Phase I involves foundational groundwork and design schematics, Phase II focuses on developing a working prototype, and Phase III involves refining the final deployable equipment and procedures. The development of a better magnetometer has the potential to provide significant benefits to numerous programs within the DoD. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2651331).
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website [here](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).