Novel Positioning, Navigation, and Timing (PNT) Signal Classification Techniques
ID: A244-015Type: BOTH
Overview

Topic

Novel Positioning, Navigation, and Timing (PNT) Signal Classification Techniques

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for a novel positioning, navigation, and timing (PNT) signal classification techniques. The purpose of this solicitation is to develop the capability to classify signals in real-time that impact navigation systems. The goal is to better understand the type of signals experienced in relevant environments to apply appropriate mitigation techniques. The current navigation systems depend on radio frequency (RF) signals that can be influenced by various interference sources. The challenge is to quickly understand the signal characteristics to react and mitigate negative impacts. The proposed solution aims to build upon AI/Machine Learning (ML) algorithm technologies to perform PNT signal classification in real-time. The project will involve developing two antenna systems capable of detecting and classifying interference signals, collecting relevant signals for training the AI/ML solution, and demonstrating the ability to detect and identify signal types in a relevant environment. The project will have a Phase I and Phase II, with Phase II focusing on the development and demonstration of the antenna systems. The anticipated duration of the project is until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR website.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Novel Positioning, Navigation, and Timing (PNT) Signal Classification Techniques
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a novel positioning, navigation, and timing (PNT) signal classification techniques. The purpose of this solicitation is to develop the capability to classify signals in real-time that impact navigation systems. The goal is to better understand the type(s) of signal(s) experienced in relevant environments to apply mitigation techniques before harm can be done. The research will focus on improving performance, cost savings, and expanding the application of the technology sensor solution set to include additional Army aviation assets. The project will involve developing adaptive learning techniques using AI/Machine Learning (ML) algorithms to perform PNT signal classification. The proposed solution aims to build upon the progress made in AI/ML signal classification and move towards real-time signal classification. The project will have a Phase I and Phase II, with Phase II requiring the development of two antenna systems capable of detecting and classifying interference signals in real-time. The project also aims to make the antenna design portable to support upgrading antenna systems and providing support to other antenna systems in the same environment. The anticipated duration of the project is until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Software Defined RadioHead (SDRH)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Software Defined RadioHead (SDRH)" as part of their SBIR 24.4 Annual solicitation. The objective is to develop a radio agnostic SDRH system that can rapidly adapt the radio carrier frequency among diverse targeted frequency bands using analog and/or digital frequency conversion. This technology will provide additional flexibility to the commander's communication plan. The SDRH design will be a flexible antenna prototype capable of supporting multiple frequencies and radio modules, complementing the C5ISR/CMOSS standard's objective for agnostic hardware. The solicitation is open for Direct to Phase II (DP2) proposals with a maximum cost of $2,000,000 for a 12-month period of performance. Phase II will involve developing a prototype SDRH for evaluation and testing by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center. The solicitation also highlights potential dual-use applications of SDRH technology in industries such as IoT, UAVs, smart cities, and mobile communications. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link or the DOD SBIR/STTR Opportunities website.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic. The Space Development Agency (SDA) is looking for novel architecture concepts, systems, technologies, and capabilities that enable leap-ahead improvements for future tranches of currently planned PWSA capability layers or address other emerging warfighter needs. The research areas include trusted AI and autonomy, advanced computing and software, integrated sensing and cyber, hypersonics, microelectronics, integrated network systems-of-systems, space technology, renewable energy generation and storage, advanced infrastructure, and advanced manufacturing. The solicitation is open for Phase II proposals only, and proposers must demonstrate the scientific and technical merit and feasibility of their projects. The research will be conducted in multiple themes, including integrating commercial sensing to the transport layer, developing optical inter-satellite link (OISL) technology and industrial base, cybersecurity, networking, in-space processing, increasing power for spacecraft bus, generic BMC3 hardware and middleware solutions, seamless multi-level security (MLS), and high-performance clocks for space. The Phase III applications of this research include providing low earth orbit communication systems and space-based processing for the distribution of overhead sensor data. The proposal submission deadline is March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the SDA website.
    DOD SBIR 24.4 Annual - Development of novel 5G Open RAN (Radio Access Networks) xApp and rApp Applications Open Topic
    Active
    Department of Defense
    The Department of Defense (DoD) is seeking proposals for the development of novel 5G Open RAN (Radio Access Networks) xApp and rApp applications. The focus of this solicitation is on security and security-related network measurement. The DoD anticipates increasing reliance on 5G and FutureG OpenRAN networks and needs tools and techniques to enhance the security and resilience of these networks. The primary use case is in support of DoD network operators, owners, and users who depend on reliable and trustworthy network communications for various DoD missions. The development and deployment of xApps and rApps within the OpenRAN framework represent an opportunity to significantly improve the security of 5G networks. These applications can provide detailed insights into network performance and security metrics, enabling a better understanding of the network's security posture and helping to mitigate potential attacks. Proposed solutions should focus on expanding the capabilities of xApps and rApps to address emerging threats and enhance scalability and efficiency. The Phase I of the project involves presenting a design for at least one high-quality xApp or rApp idea, with a duration of six months. The Phase II, lasting twelve months, focuses on prototype production, test, and evaluation. Phase III will be determined on an as-needed basis to address additional capability development or transition to operational use. The evaluation of proposed solutions will consider factors such as overall impact, false positive/false negative rate, complexity of the operational problem, vulnerability identification rate, adaptability to evolving landscape, policy/regulatory compliance, and adherence to established standards and protocols. For more information and to submit proposals, visit the solicitation agency's website at [solicitationagencyurl]. The application due date is March 31, 2025.
    DOD SBIR 24.4 Annual - Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic. The Space Development Agency (SDA) is looking for novel architecture concepts, systems, technologies, and capabilities that enable leap-ahead improvements for future tranches of currently planned PWSA capability layers or address emerging warfighter needs. The research areas include trusted AI and autonomy, advanced computing and software, integrated sensing and cyber, hypersonics, microelectronics, integrated network systems-of-systems, space technology, renewable energy generation and storage, advanced infrastructure, and advanced manufacturing. The solicitation is open for Phase II proposals only, and proposers must demonstrate the scientific and technical merit and feasibility of their projects. The research will support the development of the PWSA, a resilient military sensing and data transport capability in Low Earth Orbit (LEO). The solicitation provides specific themes and focus areas for potential deliverables, such as integrating commercial sensing to the transport layer, developing optical inter-satellite link (OISL) technology, advancing cyber and networking capabilities, and increasing power for spacecraft bus. The Phase III applications of the research include improving low Earth orbit communication systems and space-based processing for effective distribution of sensor data. The proposal submission deadline is March 31, 2025. For more information and to access the proposal template, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - xTechSpecial Forces
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the SBIR 24.4 Annual solicitation. The specific topic of the solicitation is "xTechSpecial Forces" and it is being conducted by the Army branch. The solicitation is open until March 31, 2025. The first topic of the solicitation is "GPS Denied ATAK Compatible Self Location Application." The US Army 1st Special Forces Command (Airborne) is looking for a software solution that can obtain self-location data in GPS-denied situations and integrate it into the Android Team Awareness Kit (ATAK) software platform. The software should enable self-location without the use of GPS, other networks, or additional hardware. The goal is to allow ground operators to take a picture of the sky to obtain images including celestial objects and/or passing satellites, resulting in operationally suitable self-location. The second topic is "SWARM Tracker – Counter UxS Warning System." The Army Special Operations Command is seeking an automated tool that can provide early warning of swarmed sensors and effects similar to the National Weather System's severe weather warning systems. The tool should integrate with existing and emerging systems, provide multi-modal awareness, and deliver timely notifications to tactical units and base defense operating centers. The focus is on reducing cognitive load and building user-centric notification systems. The third topic is "PSYOP Product Air Delivery Vehicle." The Army Special Operations Command requires a self-guided aerial delivery system for disseminating Psychological Operations products. The Air Delivery Vehicle (ADV) should be interchangeable depending on payload and mission requirements, resistant to electronic attack, and capable of accommodating payloads ranging from 8 ounces to 50 pounds. The ADV should have self-navigation capabilities, accurate release points, and the ability to operate in day and night conditions. The fourth topic is "Non-Attributable Mobile Mesh Network Radio." The 1st Special Forces Command is interested in a small form factor, non-attributable mesh network radio system for position location information (PLI), voice, sensor integration, and data transmission. The system should enable continuous communication outside of cellular/internet coverage, have a low physical and RF signature, and integrate with the Android Team Awareness Kit (ATAK). The fifth topic is "Distributed Electromagnetic Sensing, Automated Characterization, and Simple Reporting systems." The 1st Special Forces Command is interested in technological solutions to enhance Electronic Warfare (EW) capabilities. The focus is on scalable, cost-effective, software-based innovations that address core need areas such as AI/ML-enabled edge processing, automated signal detection and characterization, near-real-time data availability, and integration with tactical situational awareness systems. The Phase I proposals for this solicitation can receive funding up to $250,000 for a 6-month period, while Direct to Phase II proposals can receive funding up to $2,000,000 for an 18-month period. Phase I involves completing a feasibility study and developing concept plans, while Phase II focuses on producing prototype solutions. Phase III involves maturing the technology to TRL 6/7, producing prototypes for further evaluation, and updating prototypes based on soldier feedback. For more information and to submit a proposal, visit the solicitation agency's website: [link](https://www