Development of novel 5G Open RAN (Radio Access Networks) xApp and rApp Applications Open Topic
ID: OSD244-P002Type: BOTH
Overview

Topic

Development of novel 5G Open RAN (Radio Access Networks) xApp and rApp Applications Open Topic

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DoD) is seeking proposals for the development of novel 5G Open RAN (Radio Access Networks) xApp and rApp applications. The focus of this solicitation is on security and security-related network measurement. The DoD anticipates increasing reliance on 5G and FutureG OpenRAN networks and needs tools and techniques to enhance the security and resilience of these networks. The primary use case is in support of DoD network operators, owners, and users who depend on reliable and trustworthy network communications for various DoD missions.

    The development and deployment of xApps and rApps within the OpenRAN framework represent an opportunity to significantly improve the security of 5G networks. These applications can provide detailed insights into network performance and security metrics, enabling a better understanding of the network's security posture and helping to mitigate potential attacks. Proposed solutions should focus on expanding the capabilities of xApps and rApps to address emerging threats and enhance scalability and efficiency.

    The Phase I of the project involves presenting a design for at least one high-quality xApp or rApp idea, with a duration of six months. The Phase II, lasting twelve months, focuses on prototype production, test, and evaluation. Phase III will be determined on an as-needed basis to address additional capability development or transition to operational use.

    The evaluation of proposed solutions will consider factors such as overall impact, false positive/false negative rate, complexity of the operational problem, vulnerability identification rate, adaptability to evolving landscape, policy/regulatory compliance, and adherence to established standards and protocols.

    For more information and to submit proposals, visit the solicitation agency's website at [solicitation_agency_url]. The application due date is March 31, 2025.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Software Defined RadioHead (SDRH)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Software Defined RadioHead (SDRH)" as part of their SBIR 24.4 Annual solicitation. The objective is to develop a radio agnostic SDRH system that can rapidly adapt the radio carrier frequency among diverse targeted frequency bands using analog and/or digital frequency conversion. This technology will provide additional flexibility to the commander's communication plan. The SDRH design will be a flexible antenna prototype capable of supporting multiple frequencies and radio modules, complementing the C5ISR/CMOSS standard's objective for agnostic hardware. The solicitation is open for Direct to Phase II (DP2) proposals with a maximum cost of $2,000,000 for a 12-month period of performance. Phase II will involve developing a prototype SDRH for evaluation and testing by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center. The solicitation also highlights potential dual-use applications of SDRH technology in industries such as IoT, UAVs, smart cities, and mobile communications. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link or the DOD SBIR/STTR Opportunities website.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Small Unmanned Ground Robotic Systems
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a cyber-hardened small unmanned ground robotic system. The system should be capable of being operated using both a vendor-developed .apk TAK GOV software controller and a Tomahawk Robotics Grip S20 universal controller. It should integrate the best C2/data link components and be operable with Silvus Technologies and Persistent Systems radios. The system should be designed for intelligence, surveillance, and reconnaissance (ISR) purposes and be able to operate in all-weather conditions within rural and urban environments. The system should have a minimum battery life of 60-90 minutes and a ground control station line-of-sight range capability of 100 meters. The integrated sensors should be able to identify moving armed personnel at specified distances. The system should also have cyber survivability attributes and be capable of carrying various payloads. The Phase I of the project involves conducting a feasibility study to assess the options that satisfy the requirements. The Phase II includes developing, installing, and demonstrating a prototype system. The system has potential applications in a broad range of military operations, enhancing operational situational awareness, reducing cognitive and physical workload, and reducing risk to the user. The project is open for proposals until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - xTechScalable AI
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "xTechScalable AI" as part of the SBIR program. The Army branch is specifically interested in novel and disruptive concepts and technology solutions that can address the vulnerabilities of current machine learning pipelines and models. The goal is to develop comprehensive security models that can defend against universal AI threat vectors and are scalable to rapidly evolving threats. The Army is particularly interested in proposals that focus on systematic testing and evaluation methods, trusted and secure validation and verification strategies, continuous monitoring capabilities, improved transparency and assurance of code and data, and improved telemetry capabilities. The Army will prioritize submissions from winners of the xTechScalable AI prize competition. The project will involve a Direct to Phase II submission, followed by the production of prototype solutions that are easy to operate by soldiers. Phase III will focus on maturing the technology to TRL 6/7 and producing prototypes for further development and commercialization. The deadline for proposal submission is March 31, 2025. For more information and to submit a proposal, visit the solicitation agency's website at [solicitationagencyurl].
    DOD SBIR 24.4 Annual - Tactical Implementation of Quantum Hardening
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Tactical Implementation of Quantum Hardening" as part of its SBIR program. The objective is to develop a tactical implementation of quantum hardening for Army systems on a tactical network to identify vulnerabilities, remove or remediate them, and maintain security against quantum cyber threats. The Army is interested in software that can future-proof Army networks related to quantum computing vulnerabilities. The ideal solution is a holistic suite of quantum-resistant security applications that can assess cryptographic security, implement quantum-resistant algorithms, and provide a crypto-agile framework to protect sensitive data. The project will involve analyzing Army networks, prioritizing critical networks, and transitioning to a quantum-safe architecture. The performer will prototype a software suite at technology readiness level 6, demonstrated in relevant environments. The project will have a Phase I and Phase II, with Phase II delivering a prototype for further Army evaluation. The performer will have access to a lab with tactical network capabilities and associated devices for iteration. The project will also include demonstrations at NetModX events in 2024 and 2025. Awardees may be eligible for a Phase IIb award after completing Phase II. Phase III will focus on commercialization objectives. The project is open for proposals until March 31, 2025. For more information, visit the solicitation agency URL: link.
    DOD SBIR 24.4 Annual - Tactical Implementation of Quantum Hardening
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Tactical Implementation of Quantum Hardening" as part of its SBIR program. The objective is to develop a tactical implementation of quantum hardening for Army systems on a tactical network to identify vulnerabilities, remove or remediate them, and maintain security against quantum cyber threats. The Army is interested in software that can aid in future-proofing Army networks related to quantum computing vulnerabilities. The performer will prototype a representative software suite at technology readiness level 6, demonstrated in relevant environments. The ideal solution is a holistic suite of quantum-resistant security applications that can help organizations assess their cryptographic security posture, implement quantum-resistant cryptographic algorithms, and provide a crypto-agile framework to protect sensitive data from adversarial quantum computer attacks. The project will be conducted in two phases, with the second phase involving the development, building, and demonstration of a prototype. The performer will have access to a lab with tactical network capabilities and associated devices for iteration. A final demonstration will be conducted at NetModX 2025. Awardees may also be eligible for a Phase IIb award after completion of Phase II. The objective of Phase III is for the small business to pursue commercialization objectives through system-level integration and prototype demonstration. The topic is restricted under ITAR and EAR regulations. The deadline for proposal submission is March 31, 2025. For more information, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - xTechScalable AI
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "xTechScalable AI" as part of the SBIR program. The Army branch is specifically interested in novel and disruptive concepts and technology solutions that can address the vulnerabilities of current machine learning pipelines and models. The goal is to develop comprehensive security models capable of defending against universal AI threat vectors. The Army is prioritizing proposals that focus on systematic testing and evaluation methods, trusted and secure validation and verification strategies, continuous monitoring capabilities, improved transparency and assurance of code and data, and improved telemetry capabilities. The Army will use the xTechScalable AI prize competition to identify small businesses that meet the criteria for award, and only winners of the competition will be eligible to submit a proposal under this topic. The project will have three phases: Phase I involves submitting a Direct to Phase II (DP2) proposal, Phase II involves producing prototype solutions for evaluation by soldiers, and Phase III involves completing the maturation of the technology and producing prototypes for further development and commercialization. The deadline for proposal submission is March 31, 2025. For more information and to submit a proposal, visit the solicitation agency's website at [solicitationagencyurl].
    DOD SBIR 24.4 Annual - Chief Digital and Artificial Intelligence Office (CDAO) Data Mesh Reference Design (REFDES)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Chief Digital and Artificial Intelligence Office (CDAO) Data Mesh Reference Design (REFDES). The objective is to establish a set of software services that enable seamless interoperability of data across the Department of Defense (DoD) enterprise while retaining federated control, hosting, and ownership. The DoD aims to break the data out of stovepipes and create a data mesh that allows data users to discover, access, and consume DoD data products via self-service API. The data access must support attribute-based access control (ABAC) and operate in a zero-trust environment. The program consists of three phases, starting with the development of a formal REFDES in Phase I, followed by the creation of a Minimum Viable Product (MVP) in Phase II, and concluding with the delivery of a full production capability in Phase III. The REFDES must address key concepts such as VAULTIS compliance, services communication model and framework, data templating, dynamic attribution association, automated notification services, and cybersecurity and zero trust support. The resulting data mesh will support interoperability for applications in both battlefield and boardroom settings. The proposal submission deadline is March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Low Cost Persistent Multi Sensor Surveillance
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Low Cost Persistent Multi Sensor Surveillance" as part of their SBIR program. The objective of this topic is to develop environmentally hardened sensor nodes that can persistently monitor Radio Frequency (RF), weather conditions, and/or personnel access of remote islands leased on the Kwajalein Atoll for the U.S. Army's Reagan Test Site (RTS). The solutions should be independent of external power sources or communications networks, as there are no cellular or Wi-Fi communications, nor power source, in these areas. The solutions must also be capable of operating in harsh environmental conditions, including heat, humidity, regular rainfall, salt spray, and high atmospheric salinity. The data collected by these sensor nodes will be used for situational awareness, safety, security, and mission planning and support. The solicitation is open for both full or partial solutions, and Phase I proposals with a cost of up to $250,000 for a 6-month period of performance are being accepted. Phase I will involve researching and developing the system/network architecture, designing the hardware components, and proposing power source designs and networking techniques. By the end of Phase I, the awardee should have detailed descriptions of the proposed technologies. In Phase II, the awardee will produce a single prototype that demonstrates the capabilities and methodologies at a minimum of TRL4. They will also develop a user interface and display for situational awareness of sensor control and monitoring. The potential applications of this technology include wireless remote sensing for public safety, health, fitness, and wildlife dual-usages. Some examples of dual uses of remote sensing include anti-poaching efforts, remote environmental sensors enabled by low-Earth orbit satellites, wildfire early recognition sensor systems, agriculture and crop performance monitoring, and urban pollution source detection. For more information and to submit proposals, interested parties can visit the DOD SBIR program website. The solicitation is currently open, and the application due date is March 31, 2025. References: https://www.sciencedirect.com/science/article/abs/pii/S0927775722021823 https://www.sciencedirect.com/science/article/pii/S1877050914009831 http://www.ijpe-online.com/EN/10.23940/ijpe.09.5.p419.mag Keywords: sensors, nodes, Radio Frequency (RF), Reagan Test Site (RTS)