Low Size, Weight, and Power (SWaP) Phased Array For Vehicle Tracking Using Signals of Opportunity
ID: N252-115Type: BOTH
Overview

Topic

Low Size, Weight, and Power (SWaP) Phased Array For Vehicle Tracking Using Signals of Opportunity

Agency

Agency: DODBranch: NAVY

Program

Type: SBIRPhase: BOTH
Timeline
    Description

    The Department of Defense, specifically the Navy, is seeking proposals for the Small Business Innovation Research (SBIR) project titled "Low Size, Weight, and Power (SWaP) Phased Array For Vehicle Tracking Using Signals of Opportunity." The objective is to develop a state-of-the-art passive phased array system that enhances the positional accuracy of hypersonic vehicles by utilizing signals of opportunity for real-time tracking and corrections to inertial measurement unit drift errors. This technology is critical for advancing military capabilities in high-speed weapons and space systems, with potential dual-use applications in commercial sectors such as navigation and tracking systems. Interested parties should note that the solicitation is set to open on April 23, 2025, with proposals due by May 21, 2025, and further details can be found at the official SBIR website.

    Files
    Title
    Posted
    Similar Opportunities
    Affordable Ka-Band Metamaterial-Based Electronically Scanned Array Radar for Test and Training -
    DOD
    The Department of the Army is seeking innovative solutions for low-cost Ka-Band radar systems through advancements in metamaterials, aimed at emulating threat representative systems for the Test and Evaluation community. The primary objective is to develop a metamaterial-based Ka-Band radar that mimics the performance of an Active Electronically Scanned Array (AESA) while targeting a production cost of $300,000. This technology is crucial for various applications, including environmental monitoring, civil security, maritime surveillance, and healthcare imaging. Interested parties can submit Phase I proposals with a budget of up to $250,000 for a six-month performance period, with the application due by December 31, 2025. For more details, visit the solicitation agency's website at https://www.dodsbirsttr.mil/topics-app/.
    Silencing with Acoustic Rainbow Emitters (SWARE) -
    DOD
    The Department of Defense, specifically the Special Operations Command (SOCOM), is seeking innovative research and development proposals for a low-cost Acoustic Rainbow Emitter (ARE) aimed at significantly reducing the acoustic signature of Unmanned Aerial Systems (UAS). The primary objective is to create an ARE that can redirect and alter the frequencies of a UAS's acoustic emissions, achieving at least a 50% reduction in audibility, while ensuring the system is adaptable to various UAS platforms and maintains a low visual signature. This technology is crucial for enhancing the stealth capabilities of Special Operations Forces during tactical operations. Interested parties should note that the solicitation number is SOCOM254-008, with a release date of September 3, 2025, and applications due by December 31, 2025. For further details, please visit the official solicitation link at https://www.dodsbirsttr.mil/topics-app/.
    Affordable IR Sensors for Proliferated LEO Missile Tracking Constellation -
    DOD
    The United States Space Force (USSF), through the Space Development Agency (SDA), is seeking innovative solutions for affordable midwave infrared (MWIR) sensor technologies aimed at enhancing missile detection and tracking capabilities in Low Earth Orbit (LEO). The primary objective is to develop a complete sensor prototype that demonstrates high sensitivity to missile plumes, radiation tolerance for extended LEO operations, and compatibility with small satellite platforms, all while achieving significant cost reductions through innovative materials and manufacturing processes. This initiative is critical for the Proliferated Warfighter Space Architecture (PWSA) and other next-generation missile warning constellations, ensuring effective defense against advanced missile threats. Interested parties should note that this is a Direct-to-Phase-II effort, with proposals due by December 31, 2025, and must demonstrate prior feasibility studies and a clear plan for integration with U.S. Department of Air Force operations.
    Pulsed High-power Laser Accelerators to Study radiation Hardening (PHLASH) -
    DOD
    The Department of Defense, through DARPA, is seeking proposals for the Pulsed High-power Laser Accelerators to Study Radiation Hardening (PHLASH) program, which aims to develop a compact, scalable laser driver for electron beam generation to enhance radiation testing of microelectronic systems intended for space applications. The primary objective is to demonstrate a prototype laser driver capable of generating 50-MeV electron beam energies at a pulse repetition rate exceeding 100 Hz, with a design that can be scaled to 100 GeV at 1 kHz, all within a compact footprint of less than 250 m³. This initiative addresses the limitations of existing heavy-ion accelerator facilities by leveraging Laser Wakefield Acceleration (LWFA) technology, which allows for high-energy electron packet generation over significantly shorter distances. Proposals are due by December 31, 2025, and interested parties can find more information and submit their applications through the official solicitation link at https://www.dodsbirsttr.mil/topics-app/.
    Knowledge-Guided Test and Evaluation Frameworks for proliferated Low Earth Orbit Constellations -
    DOD
    The United States Space Force, through the Space Development Agency (SDA), is seeking innovative solutions for a knowledge-guided test and evaluation framework tailored for the Proliferated Warfighter Space Architecture (PWSA), a rapidly evolving constellation of satellites in Low Earth Orbit (LEO). The objective is to develop an adaptive test-planning capability that continuously updates system performance, quantifies knowledge gain against resource costs, and dynamically re-plans test sequences to prioritize high-utility activities, utilizing probabilistic reasoning and integrating both synthetic and live test data. This initiative is critical for enhancing the efficiency and effectiveness of test campaigns in support of SDA's agile acquisition model, with Phase I being a direct-to-Phase II proposal process requiring a feasibility study. The opportunity is set to open for applications on December 10, 2025, with a closing date of December 31, 2025, and interested parties can find more information at the provided source link.
    RF Frontend Design (RFE) on Gallium Nitride on Silicon (GaN-on-Si) Open Topic -
    DOD
    The Department of Defense, through the Defense Microelectronics Activity (DMEA), is seeking proposals for the design, development, and demonstration of a low-noise amplifier (LNA) and power amplifier (PA) utilizing GlobalFoundries' 200-mm Gallium Nitride on Silicon (GaN-on-Si) technology. The objective is to enhance output power density, linearity, and efficiency in radio communication systems for both military and commercial applications, addressing the current lack of integrated solutions in this technology space. This initiative is critical for improving the performance of RF frontend circuitry, which is essential for radar, communications, and electronic warfare systems. Proposals are due by December 31, 2025, with the opportunity to access government-furnished equipment for prototyping, and interested parties can find more information at the DOD SBIR website.
    Secure Multi-Source Data Fusion Environment for pLEO Constellations -
    DOD
    The United States Space Force (USSF), through the Space Development Agency (SDA), is seeking innovative solutions for a Secure Multi-Source Data Fusion Environment tailored for proliferated Low Earth Orbit (pLEO) constellations. The objective is to develop an adaptable software platform capable of ingesting, integrating, and analyzing high-volume, low-latency data from diverse space-based sources, enhancing real-time situational awareness and mission adaptability for the Department of Defense’s Proliferated Warfighter Space Architecture (PWSA). This initiative is critical for enabling automated decision-making and timely execution of operations, supporting the USSF's goal of improving data-to-decision agility and operational responsiveness. Interested parties must prepare Direct-to-Phase II proposals, demonstrating a completed feasibility study and a clear integration plan with Department of Air Force operations, with the application deadline set for December 31, 2025.
    Space-Based Interceptors for Hypersonic Glide Vehicle Threats -
    DOD
    The United States Space Force (USSF) is seeking innovative solutions for the development of space-based interceptors (SBIs) designed to defeat hypersonic glide vehicle (HGV) threats during their midcourse or glide phases of flight. This initiative is part of a broader strategy to establish a layered missile defense architecture that integrates advanced sensing, autonomy, and kinetic interception capabilities, focusing on compact, high-performance interceptors that can operate in extreme thermal environments and manage unpredictable trajectories. The opportunity is structured as a Direct-to-Phase II effort, requiring applicants to demonstrate prior feasibility and provide a comprehensive development timeline, with key deadlines set for proposal submission by December 31, 2025. Interested parties can find more information and submit proposals through the official solicitation portal at https://www.dodsbirsttr.mil/topics-app/.
    Space-Based Interceptors for Boost-Phase Missile Defense in the Endo-Atmospheric Region -
    DOD
    The U.S. Space Force (USSF) is soliciting innovative solutions for space-based interceptors (SBIs) capable of conducting boost-phase missile defense within the endo-atmospheric region, specifically below 120 km altitude. The initiative aims to address critical capability gaps by developing compact, high-performance platforms that enable rapid, precise, and survivable engagements from space, focusing on high-G propulsion systems, advanced seekers, and low-size, weight, and power (SWaP) interceptors integrated into space vehicles. This effort is crucial for establishing a layered missile defense architecture and enhancing national security against evolving missile threats. Interested parties should prepare Direct-to-Phase-II proposals, as Phase I awards will not be made, with applications due by December 31, 2025. For more information, visit the solicitation link at https://www.dodsbirsttr.mil/topics-app/.
    Novel Technologies for CWMD and Related Threats - Open Topic -
    DOD
    The Defense Threat Reduction Agency (DTRA) is seeking innovative solutions through its Small Business Innovation Research (SBIR) program to develop novel technologies for detecting radiological and nuclear threats without the use of specialized sensors. The objective is to utilize signals from existing general-purpose military hardware, commercially available devices, and public data sources to enhance the detection capabilities for weapons of mass destruction (WMD). This initiative is crucial for overcoming the challenges associated with the high costs and lengthy timelines of developing new military hardware for WMD detection. The project is structured in three phases: Phase I focuses on identifying feasible use cases and developing a course of action; Phase II involves building and testing a model or prototype; and Phase III aims to refine the technology for broader dual-use applications in defense, government, and commercial sectors. The solicitation is currently in pre-release status, with an open date set for December 10, 2025, and a close date of December 31, 2025. Interested parties can find more information and submit proposals through the DOD SBIR website.