TECHNOLOGY/BUSINESS OPPORTUNITY Anisotropic, multi-functional polymeric microparticles additives for polymeric formulation enhancement
ID: 2025-117Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFLLNS – DOE CONTRACTORLivermore, CA, 94551, USA

NAICS

Plastics Material and Resin Manufacturing (325211)
Timeline
    Description

    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to develop and commercialize anisotropic, multi-functional polymeric microparticles additives aimed at enhancing polymeric formulations. This initiative seeks industry partners capable of advancing a synthetic methodology that utilizes a two-phase high shear mixing protocol to create anisotropic polymer microparticles, which can be integrated into 3D printable Direct Ink Write (DIW) inks. The technology, currently at a Technology Readiness Level (TRL) of 3-5, has potential applications in rheology modification and multifunctionality in DIW inks and prints. Interested companies should submit a statement of interest, including their corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence, with further details available on their website.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    Efficient Additive Manufacturing for Advanced U-X Nuclear Fuel Alloys
    Energy, Department Of
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative technology for efficient additive manufacturing of advanced U-X nuclear fuel alloys. The objective is to revolutionize the production of U-X compounds, such as U3Si2 and U-Mo alloys, by utilizing a patented Laser Engineered Net Shaping (LENS) process that streamlines manufacturing, reduces costs, and enhances safety compared to traditional methods. This technology is crucial for applications in commercial nuclear reactors, research reactors, and defense and space sectors, facilitating the production of next-generation accident-tolerant fuels. Interested companies should contact the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing rather than procurement or hiring services.
    Manufacturing Demonstration Facility: Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies
    Energy, Department Of
    The Department of Energy, through the Oak Ridge National Laboratory (ORNL), is seeking industry partners for collaborative projects aimed at developing energy-efficient manufacturing technologies within its Manufacturing Demonstration Facility (MDF). The initiative focuses on reducing manufacturing energy intensity and enhancing U.S. competitiveness by inviting proposals from industries engaged in material processing, particularly in advanced manufacturing technologies such as additive manufacturing and carbon fiber composites. Participants must provide at least a 50% cost share, and projects will be evaluated based on technical feasibility, potential for commercialization, and energy savings. Proposals can be submitted via email to MDFcollaboration@ornl.gov, and the submission period remains open, contingent on funding availability from the DOE Advanced Manufacturing Office.
    Titanium-Tantalum Alloy Manufacturing for Biomedical and Engineering Applications
    Energy, Department Of
    The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners for the licensing of an innovative electrochemical process for manufacturing titanium-tantalum alloys aimed at biomedical and engineering applications. This process addresses the challenges of traditional manufacturing methods, which are energy-intensive and generate significant waste, by enabling direct synthesis of alloys from metal oxides, thus promoting cost efficiency and sustainability. The technology has potential applications in biomedical devices, high-performance structural materials, and corrosion-resistant coatings, making it a valuable opportunity for companies interested in advancing manufacturing technologies. Interested parties can reach out to the Technology Deployment department at td@inl.gov for further collaboration opportunities.
    TECHNOLOGY LICENSING OPPORTUNITY: Thermostable GlowTag (YFAST)
    Energy, Department Of
    The Department of Energy is offering a technology licensing opportunity for the Thermostable GlowTag (YFAST), developed by scientists at the Los Alamos National Laboratory. This innovative technology addresses the challenges in enzyme engineering by providing a high-throughput screening platform that utilizes a modified fluorogenic protein, tsFAST, which glows when correctly folded and remains stable at elevated temperatures. The application of this technology is significant across various industries, including biofuels, waste management, and chemical manufacturing, as it enables the engineering of mesophilic enzymes for heat resistance and improves screening accuracy while reducing operational costs. Interested parties can reach out to Caleb Ledgerwood or Lindsay Augustyn at licensing@lanl.gov for further details, with the technology currently at TRL 2-3 and a U.S. patent pending.
    Transforming Biomass Preprocessing for Advanced Gasification
    Energy, Department Of
    The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative technologies aimed at transforming biomass preprocessing for advanced gasification. The objective is to develop efficient and scalable methods for preparing biomass feedstock, addressing challenges such as high energy demands and inconsistent particle morphology that hinder gasification processes. This initiative is crucial for enhancing the performance of gasification systems, supporting renewable energy projects, and facilitating advancements in biomass utilization. Interested companies can reach out to the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing intellectual property rather than procurement or hiring services.
    Catalysts with Tunable Electrocatalytic Behavior for CO₂ Conversion
    Energy, Department Of
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative catalysts with tunable electrocatalytic behavior for CO₂ conversion. The objective is to address significant challenges in current CO₂ electrochemical conversion systems, including low product selectivity, rigid system designs, and economic constraints, by introducing a supported-metal catalyst that allows for precise control over catalytic behavior and product output. This technology is particularly relevant for carbon-intensive industries and chemical manufacturing, enhancing the economic viability of carbon capture, utilization, and storage initiatives. Interested parties can reach out to the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing intellectual property rather than procurement or hiring services.
    Notice of Intent to Issue a Funding Opportunity from U.S. Department of Energy’s (DOE) High Performance Computing for Energy Innovation (HPC4EI) Initiative
    Energy, Department Of
    The U.S. Department of Energy (DOE) is set to issue a new solicitation under its High Performance Computing for Energy Innovation (HPC4EI) initiative, specifically targeting the High-Performance Computing for Manufacturing (HPC4Mfg) program. This initiative aims to provide U.S. manufacturers with access to DOE National Laboratory expertise and advanced supercomputing resources to tackle complex challenges in energy and materials, thereby enhancing efficiency, reducing costs, and strengthening supply chain resilience. Eligible participants include entities that manufacture or operate in the U.S. for commercial applications, as well as organizations that support these entities, with selected projects potentially receiving up to $400,000 in funding, contingent upon a minimum 20% cost share from industry partners. For further inquiries, interested parties can contact Aaron Fisher at fisher47@llnl.gov or by phone at 925-422-3950.
    TECHNOLOGY LICENSING OPPORTUNITY: Remotely Operated Ultrasonic Separation (UltraSep)
    Energy, Department Of
    The Department of Energy is offering a technology licensing opportunity for UltraSep, a novel ultrasonic separation technology developed by Los Alamos National Laboratory. This technology aims to address inefficiencies in traditional filtration methods used in industrial manufacturing by providing a membrane-free solution that significantly reduces maintenance disruptions and operational footprint. UltraSep is designed for applications in various sectors, including food and beverage production, pharmaceutical processes, and critical nuclear operations, achieving over 99.9% metal removal and up to 95% bulk water extraction. Interested parties can reach out to Marc Witkowski or Lindsay Augustyn at licensing@lanl.gov for further discussions regarding partnership opportunities, as the technology is currently at Technology Readiness Level 5 and available for licensing agreements.
    INL Innovation Spotlight Efficient Protonic Ceramic Power: Dual-Mode Hydrogen and Electricity Generation
    Energy, Department Of
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking partnerships to advance its innovative technology in Efficient Protonic Ceramic Power, which enables dual-mode hydrogen production and electricity generation. This opportunity focuses on the development of a reversible solid oxide cell technology that operates efficiently at lower temperatures, addressing the critical need for sustainable energy conversion and storage solutions in the context of a global shift towards renewable energy. The technology, utilizing a high-performance PNC oxide material, offers enhanced efficiency, durability, and versatility for applications in renewable energy storage, hydrogen production, and power generation. Interested parties can engage with INL for licensing opportunities and further discussions by contacting Andrew Rankin at andrew.rankin@inl.gov.
    INL Innovation Spotlight Precision Enhancement for Thermocouples: A Leap in Measurement Accuracy
    Energy, Department Of
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking partnerships to commercialize an innovative technology aimed at enhancing the precision of thermocouples, which are critical for accurate temperature measurement across various industries. This technology utilizes ohmic heating to stabilize thermocouples, significantly improving their accuracy and lifespan while addressing the common issue of accuracy drift, particularly in high-temperature or radiation environments. With applications spanning manufacturing, aerospace, energy production, and healthcare, this advancement represents a significant leap in measurement reliability. Interested parties can learn more about licensing opportunities by contacting Andrew Rankin at andrew.rankin@inl.gov.