Transforming Biomass Preprocessing for Advanced Gasification
ID: BA-1577Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFBATTELLE ENERGY ALLIANCE–DOE CNTRIdaho Falls, ID, 83415, USA

NAICS

Research and Development in Biotechnology (except Nanobiotechnology) (541714)
Timeline
    Description

    The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative technologies aimed at transforming biomass preprocessing for advanced gasification. The objective is to develop efficient and scalable methods for preparing biomass feedstock, addressing challenges such as high energy demands and inconsistent particle morphology that hinder gasification processes. This initiative is crucial for enhancing the performance of gasification systems, supporting renewable energy projects, and facilitating advancements in biomass utilization. Interested companies can reach out to the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing intellectual property rather than procurement or hiring services.

    Point(s) of Contact
    Technology Deployment
    td@inl.gov
    Files
    No associated files provided.
    Lifecycle
    Title
    Type
    Similar Opportunities
    Catalysts with Tunable Electrocatalytic Behavior for CO₂ Conversion
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative catalysts with tunable electrocatalytic behavior for CO₂ conversion. The objective is to address significant challenges in current CO₂ electrochemical conversion systems, including low product selectivity, rigid system designs, and economic constraints, by introducing a supported-metal catalyst that allows for precise control over catalytic behavior and product output. This technology is particularly relevant for carbon-intensive industries and chemical manufacturing, enhancing the economic viability of carbon capture, utilization, and storage initiatives. Interested parties can reach out to the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing intellectual property rather than procurement or hiring services.
    Efficient Additive Manufacturing for Advanced U-X Nuclear Fuel Alloys
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative technology for efficient additive manufacturing of advanced U-X nuclear fuel alloys. The objective is to revolutionize the production of U-X compounds, such as U3Si2 and U-Mo alloys, by utilizing a patented Laser Engineered Net Shaping (LENS) process that streamlines manufacturing, reduces costs, and enhances safety compared to traditional methods. This technology is crucial for applications in commercial nuclear reactors, research reactors, and defense and space sectors, facilitating the production of next-generation accident-tolerant fuels. Interested companies should contact the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing rather than procurement or hiring services.
    Precision Steam Generation for High-Temperature Electrolysis
    Buyer not available
    The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license an innovative technology for Precision Steam Generation aimed at enhancing high-temperature electrolysis systems. The objective is to develop a reliable method for generating hydrogen-steam mixtures that addresses the challenges of fluctuating flow rates and pressure variations, while utilizing low-grade waste heat efficiently. This technology is crucial for hydrogen production and energy efficiency in various applications, including hydrogen electrolysis systems, industrial heating, and renewable energy integration. Interested companies should contact the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing rather than procurement or hiring services.
    Open Source Software: LIGGGHTS-INL: Pioneering Biomass Feedstock Handling with Advanced Particle Simulation
    Buyer not available
    The Department of Energy is offering an opportunity to utilize the open-source software LIGGGHTS-INL, which focuses on pioneering biomass feedstock handling through advanced particle simulation. This software aims to address the challenges associated with the efficient handling of biomass materials, which are crucial for the transition to biofuels as a renewable energy source. By integrating laboratory data and providing a platform for simulating biomass particle dynamics, LIGGGHTS-INL enhances the design and optimization of biomass handling equipment, ultimately aiming to lower biofuel production costs. For further inquiries, interested parties can contact Andrew Rankin at andrew.rankin@inl.gov.
    INL Innovation Spotlight Efficient Protonic Ceramic Power: Dual-Mode Hydrogen and Electricity Generation
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking partnerships to advance its innovative technology in Efficient Protonic Ceramic Power, which enables dual-mode hydrogen production and electricity generation. This opportunity focuses on the development of a reversible solid oxide cell technology that operates efficiently at lower temperatures, addressing the critical need for sustainable energy conversion and storage solutions in the context of a global shift towards renewable energy. The technology, utilizing a high-performance PNC oxide material, offers enhanced efficiency, durability, and versatility for applications in renewable energy storage, hydrogen production, and power generation. Interested parties can engage with INL for licensing opportunities and further discussions by contacting Andrew Rankin at andrew.rankin@inl.gov.
    Tech Licensing Opportunity: Advanced Bonding Method for Heterogeneous Systems
    Buyer not available
    The Department of Energy is offering a technology licensing opportunity for an advanced bonding method designed for heterogeneous systems, developed by researchers at the Idaho National Laboratory (INL). This innovative method allows for the seamless bonding of similar and dissimilar materials without visible bond lines, significantly enhancing material integrity and durability while reducing energy consumption compared to traditional bonding techniques. The technology is particularly relevant for industries such as aerospace, electronics, and nuclear, where material reliability is critical. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further discussions on licensing terms and opportunities for collaboration.
    Titanium-Tantalum Alloy Manufacturing for Biomedical and Engineering Applications
    Buyer not available
    The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners for the licensing of an innovative electrochemical process for manufacturing titanium-tantalum alloys aimed at biomedical and engineering applications. This process addresses the challenges of traditional manufacturing methods, which are energy-intensive and generate significant waste, by enabling direct synthesis of alloys from metal oxides, thus promoting cost efficiency and sustainability. The technology has potential applications in biomedical devices, high-performance structural materials, and corrosion-resistant coatings, making it a valuable opportunity for companies interested in advancing manufacturing technologies. Interested parties can reach out to the Technology Deployment department at td@inl.gov for further collaboration opportunities.
    Tech Licensing Opportunity: Electric Field Assisted Sintering of Bimetallic Materials
    Buyer not available
    The Department of Energy is offering a technology licensing opportunity for a novel method of Electric Field Assisted Sintering (EFAS) of bimetallic materials, aimed at enhancing the joining of dissimilar metals. This innovative technology addresses the limitations and high costs associated with traditional welding methods, providing a practical solution for industries such as aerospace, heat transfer, and manufacturing by enabling the fusion of materials like aluminum and stainless steel without the need for bulky connectors. The technology is currently at Technology Readiness Level 5 and is supported by a US Provisional Patent Application, with the Idaho National Laboratory (INL) seeking partnerships to commercialize this advancement. Interested parties can contact Andrew Rankin at andrew.rankin@inl.gov for further discussions on licensing terms and opportunities.
    Tech Licensing Opportunity: Realtime Electrochemical Waveform Control with Integrated Performance Monitoring
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance, is offering a technology licensing opportunity for a novel system known as Realtime Electrochemical Waveform Control with Integrated Performance Monitoring. This technology aims to enhance the performance and efficiency of electrochemical devices, such as batteries and fuel cells, by enabling continuous performance analytics and optimization without interrupting operations. The integration of real-time waveform analysis addresses significant challenges in the electrolysis and fuel cell industries, particularly the need for sophisticated performance monitoring in large-scale systems. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further details, and additional information about licensing opportunities can be found at https://inl.gov/technology-deployment/.
    Open Source Software: Optimizing Granular Material Handling with Advanced ABAQUS Add-Ons
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory, is seeking to optimize granular material handling with advanced ABAQUS add-ons designed for simulating granular flow physics. This initiative aims to address significant challenges faced by manufacturers and biorefineries, particularly issues related to jamming and bridging in equipment such as hoppers and screw conveyors, which can lead to operational inefficiencies and potential closures. The software package includes four sophisticated granular flow constitutive models tailored for various scales of granular flow, enhancing accuracy and operational optimization for equipment design. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further information regarding this opportunity.