TECHNOLOGY/BUSINESS OPPORTUNITY Thin planar optical components generated with substrate-engraved metasurfaces
ID: IL-13545Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFLLNS – DOE CONTRACTORLivermore, CA, 94551, USA

NAICS

All Other Industrial Machinery Manufacturing (333248)
Timeline
    Description

    Special Notice: ENERGY, DEPARTMENT OF is offering the opportunity to collaborate and commercialize a method to generate thin planar optical components using substrate-engraved metasurfaces. This technology is typically used for high power laser systems, thin lens fabrication, aberration correction, specialized gratings, and flat 'freeform' optics. The method involves patterning the index of refraction by compressing metasurface features vertically and spreading them radially, allowing for rapid rewriting of the index on large aperture optics. The advantages of this technology include the ability to engrave a wider variety of optical substrates, tailoring the refractive index profile, high laser durability, wavelength and angle insensitivity, ultra-hydrophobic surface texture, and lightweight optical elements. Potential applications include high power laser systems for industrial and scientific purposes, as well as AR/VR lens elements and other optical technologies. Lawrence Livermore National Laboratory is seeking industry partners to bring this technology to the market. Interested companies should provide a statement of interest including company information, expertise, and facilities relevant to commercializing this technology.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY/BUSINESS OPPORTUNITY Scaled Synthesis of MXenes
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to develop and commercialize a scaled-up chemical synthesis method for MXenes, advanced materials known for their potential in electromagnetic shielding applications. The objective is to enhance the synthesis process, which currently suffers from low yields and variability, by utilizing a novel solution-phase method that achieves over 70% production yield, significantly improving upon traditional methods. MXenes are gaining attention for their lightweight, flexible properties and potential applications in various fields, including electronics, batteries, and water desalination. Interested companies are encouraged to submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence.
    Licensing Opportunity: Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology titled "Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope." This innovative method allows for the precise control and placement of atomic defects in materials, significantly enhancing applications in quantum photonics, magnetic storage, and catalysis, while overcoming limitations of traditional scanning tunneling microscopes. The technology is applicable to both 2D and 3D materials, enabling scalable atomic-scale manufacturing without damaging the material's atomic content. Interested parties can learn more about this opportunity by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    TECHNOLOGY/BUSINESS OPPORTUNITY Piezo-driven jetting of powders for controlled packing density
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop a piezo-driven jetting method for additive manufacturing aimed at enhancing controlled packing density of powders. This innovative technology addresses challenges in producing geometrically complex parts with reduced porosity and improved material efficiency, making it applicable for both metal and ceramic powders in various industries, including manufacturing and pharmaceuticals. Interested companies with relevant expertise are encouraged to submit a statement of interest, including company details and capabilities, to LLNL's Innovation and Partnerships Office by contacting Austin Smith or Charlotte Eng via email or phone. This opportunity is not a procurement but a call for industry partners to commercialize the technology, which is currently at Technology Readiness Level 3 and has patent protection filed.
    TECHNOLOGY LICENSING OPPORTUNITY Solid State Nuclear Lasing Sensors: Revolutionizing In-Pile Reactor Measurements
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Solid State Nuclear Lasing Sensors. These sensors revolutionize in-pile reactor measurements by enhancing accuracy and spatial resolution. Traditional nuclear reactor power measurement methods have limitations in spatial resolution and potential inaccuracies. This groundbreaking technology utilizes solid state lasing media/crystals to produce laser light, which directly correlates with reactor power and radiation flux. The sensors can be strategically placed within the reactor for real-time power/flux distribution measurements. The technology has applications in commercial nuclear power plants, micro nuclear reactors, and space power and nuclear thermal propulsion reactors. The development status is at TRL 3 - Analytical and experimental proof-of-concept. For more information and collaboration opportunities, please contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Wavefront Distortion Correction in Microscopy Image
    Active
    Energy, Department Of
    The Department of Energy, specifically through ORNL UT-Battelle LLC, is offering a licensing opportunity for a wavefront distortion correction algorithm designed for scanning tunneling microscopy (STM) images. This innovative technology addresses the common issue of distortion in STM images by providing a method to identify and correct nonlinear in-plane distortions without prior knowledge of scanning parameters or atom positions. The algorithm is particularly beneficial for manufacturers and users of scanning tunneling and electron microscopes, as it enhances the accuracy of atomic resolution imaging. Interested parties can learn more about this technology by contacting Leslie Smith at smithlm@ornl.gov or by phone at 865-341-0373.
    TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials The Department of Energy is offering a technology licensing opportunity for embedded fiber optic sensors in high-temperature materials. This technology utilizes Electric Field-Assisted Sintering (EFAS) to embed fiber optic sensors in high-temperature structural materials for real-time structural health monitoring in extreme environments. It is typically used for real-time monitoring in high-temperature, high-pressure, and radioactive environments, making it crucial for ensuring the integrity and safety of components in industries such as nuclear reactors, aerospace, and high-temperature industrial settings. The technology has undergone testing to verify the integrity and functionality of the embedded fiber and the quality of the bond between the fiber and the metallic matrix. Benefits include achieving successful real-time monitoring, improving bond quality, ensuring scalability, and minimizing signal loss. Applications include nuclear reactor monitoring, aerospace components, automotive systems, energy production infrastructure, and biomedical engineering. The technology is at a Technology Readiness Level (TRL) 3, with key proof-of-concept experiments and parameter optimizations already completed. Interested companies should contact Andrew Rankin at td@inl.gov for more information on this licensing opportunity.
    Licensing Opportunity: Real-Time, Rapid and Noninvasive Atomic Lock-On in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology that enables real-time, rapid, and non-invasive atomic lock-on in scanning transmission electron microscopes (STEM). This innovative procedure allows for ultra-precise targeting of individual atoms with a precision below 20 picometers, significantly enhancing the capabilities of STEM by automating beam experiments and minimizing human error. The technology is particularly relevant for applications in semiconductor manufacturing and materials research, providing benefits such as non-invasiveness, speed, and high precision. Interested parties can learn more about this opportunity by contacting partnerships@ornl.gov or calling 865-574-1051.
    Licensing Opportunity: Limited Center Constraint of Optimal Thickness Build Substrates for Additive Manufacturing
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a technology titled "Limited Center Constraint of Optimal Thickness Build Substrates for Additive Manufacturing," developed by ORNL UT-Battelle LLC. This innovative method addresses significant challenges in additive manufacturing, specifically focusing on substrate design and fixturing to minimize residual stress, distortion, and cracking during the printing process. The technology is applicable across various industries, including aerospace, automotive, and composite manufacturing, ensuring that the final machined part remains intact despite substrate distortion. Interested parties can contact Alex DeTrana at detranaag@ornl.gov or call 865-341-0423 for further information regarding this opportunity.
    TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements The Department of Energy is seeking a technology licensing opportunity for Green 3D Electrodeposition (G3DED), a groundbreaking approach to fabricate high-performance metal fuels. This technology combines green electrodeposition with 3D manufacturing, ensuring efficiency, reduced contamination, and cost-effectiveness. Traditionally, metal fuel fabrication has relied on high-temperature processes, which often lead to contamination and waste. While 3D printing brought innovation, it introduced challenges in nuclear applications. The G3DED technology addresses these issues by harnessing the benefits of green electrodeposition in ionic liquid electrolytes and integrating it with advanced 3D manufacturing techniques. The G3DED technology allows for the fabrication of metallic fuels at room or slightly elevated temperatures, optimizing fuel composition and microstructures. It offers significant reductions in contamination and waste, versatility in using different starting materials, and potential cost savings due to process simplification. The technology is scalable and designed to meet diverse application needs. Potential applications of G3DED include fabrication of nuclear fuels and components, corrosion prevention, processing of new fuels, spent fuels, and nuclear wastes. It also has potential applications in the production of lightweight materials like aluminum and titanium alloys, manufacturing of battery materials, electrodes, and devices, and electrochemical dissolution of noble metals for etching and machining. The G3DED technology is currently at Technology Readiness Level (TRL) 2, with a technology concept and/or application formulated. It is protected by a US Patent Application (No. 17/309,574) managed by Battelle Energy Alliance, LLC. The Idaho National Laboratory (INL) is eager to form commercial collaborations and license the intellectual property to organizations proficient in bringing innovations to the market, particularly small businesses and start-ups. For further inquiries and collaboration opportunities, please contact Andrew Rankin at td@inl.gov. More information about collaborating with INL can be found at https://inl.gov/inl-initiatives/technology-deployment.
    TECHNOLOGY TRANSFER OPPORTUNITY: Smart Optics Material Characterization System (LAR-TOPS-76)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Smart Optics Material Characterization System. This system, developed by NASA's Langley Research Center, is a wireless, open-circuit SansEC sensor that can detect the presence of chemicals without being in contact with them. It uses a unique thin-film design and a chemical reactant to detect specific chemicals in caustic or harsh environments. The sensors are cost-effective and environmentally friendly to manufacture and use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, visit the NASA Technology Transfer Portal.