Wideband 16x12 Non-Blocking Radio Frequency Switch
ID: N241-019Type: BOTH
Overview

Topic

Wideband 16x12 Non-Blocking Radio Frequency Switch

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for the development of a Wideband 16x12 Non-Blocking Radio Frequency (RF) Switch. The objective is to create a dynamically reconfigurable, minimal latency 6U Virtual Path Cross-Connect (VPX) wideband RF switch that can handle multiple signals from various sources to increase autonomy and address emerging threats. The RF switch should operate from 1.5 MHz to 18 GHz and maintain present size, weight, power, and cooling (SWaPC) constraints. It should be able to route any of the 16 input apertures to any of the 12 output tuner channels while remaining dynamically reconfigurable. The proposed solution should adhere to open interface standards and include an Application Programmer Interface (API) and Interface Control Documents (ICD). The design should address performance metrics such as gain, isolation, noise figure, and switching time. The project will have a Phase I for design and development, Phase II for prototype development and demonstration, and Phase III for refinement, integration, and compliance with military standards. The selected contractor must be U.S. owned and operated with no foreign influence and have the ability to acquire and maintain a secret level facility and Personnel Security Clearances. The technology has potential dual-use applications in the commercial sector, particularly in the field of missile protection for commercial aircraft.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Software Defined RadioHead (SDRH)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Software Defined RadioHead (SDRH)" as part of their SBIR 24.4 Annual solicitation. The objective is to develop a radio agnostic SDRH system that can rapidly adapt the radio carrier frequency among diverse targeted frequency bands using analog and/or digital frequency conversion. This technology will provide additional flexibility to the commander's communication plan. The SDRH design will be a flexible antenna prototype capable of supporting multiple frequencies and radio modules, complementing the C5ISR/CMOSS standard's objective for agnostic hardware. The solicitation is open for Direct to Phase II (DP2) proposals with a maximum cost of $2,000,000 for a 12-month period of performance. Phase II will involve developing a prototype SDRH for evaluation and testing by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center. The solicitation also highlights potential dual-use applications of SDRH technology in industries such as IoT, UAVs, smart cities, and mobile communications. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link or the DOD SBIR/STTR Opportunities website.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD SBIR 24.4 Annual - Development of novel 5G Open RAN (Radio Access Networks) xApp and rApp Applications Open Topic
    Active
    Department of Defense
    The Department of Defense (DoD) is seeking proposals for the development of novel 5G Open RAN (Radio Access Networks) xApp and rApp applications. The focus of this solicitation is on security and security-related network measurement. The DoD anticipates increasing reliance on 5G and FutureG OpenRAN networks and needs tools and techniques to enhance the security and resilience of these networks. The primary use case is in support of DoD network operators, owners, and users who depend on reliable and trustworthy network communications for various DoD missions. The development and deployment of xApps and rApps within the OpenRAN framework represent an opportunity to significantly improve the security of 5G networks. These applications can provide detailed insights into network performance and security metrics, enabling a better understanding of the network's security posture and helping to mitigate potential attacks. Proposed solutions should focus on expanding the capabilities of xApps and rApps to address emerging threats and enhance scalability and efficiency. The Phase I of the project involves presenting a design for at least one high-quality xApp or rApp idea, with a duration of six months. The Phase II, lasting twelve months, focuses on prototype production, test, and evaluation. Phase III will be determined on an as-needed basis to address additional capability development or transition to operational use. The evaluation of proposed solutions will consider factors such as overall impact, false positive/false negative rate, complexity of the operational problem, vulnerability identification rate, adaptability to evolving landscape, policy/regulatory compliance, and adherence to established standards and protocols. For more information and to submit proposals, visit the solicitation agency's website at [solicitationagencyurl]. The application due date is March 31, 2025.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Non-RF Transceiver Alternative Communicator (NRF-TAC)  
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Non-RF Transceiver Alternative Communicator (NRF-TAC) through its SBIR program. The U.S. Army is interested in developing a small, energy-efficient, self-contained transceiver that can wirelessly communicate between two points without using traditional radio frequency (RF) transport. The NRF-TAC device should be capable of transmitting and receiving signaling up to 300 meters using non-standard means such as magnetic, acoustic, or infrared, which are difficult to detect and report in covert activities. The device should be easily concealable, field programmable, and able to operate for at least 800 hours without intervention. The Phase I of the project will involve the creation and delivery of a plausible design, while Phase II will focus on developing and testing a prototype. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the SBIR topic link or the solicitation agency website.
    DOD SBIR 24.4 Annual - Non-RF Transceiver Alternative Communicator (NRF-TAC)  
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Non-RF Transceiver Alternative Communicator (NRF-TAC) through its SBIR program. The U.S. Army is interested in developing a small, energy-efficient transceiver that can wirelessly communicate between two points without using traditional radio frequency (RF) transport. The NRF-TAC device should be capable of transmitting and receiving signals up to 300 meters using non-standard means such as magnetic, acoustic, or infrared communication. The goal is to create a communication method that is difficult to detect and report in covert activities, enabling new mission deployment possibilities for remote sensor operation and control. The NRF-TAC should be self-contained, easily concealable, field programmable, and able to operate for at least 800 hours without intervention. The SBIR effort involves designing and building an innovative NRF-TAC prototype for realistic field application. Phase I involves creating a design with a documented rationale, while Phase II focuses on developing and testing a prototype. The potential applications of NRF sensor technology include home security, automotive crash sensing, additive manufacturing, and IoT. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Low Cost Persistent Multi Sensor Surveillance
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Low Cost Persistent Multi Sensor Surveillance" as part of their SBIR program. The objective of this topic is to develop environmentally hardened sensor nodes that can persistently monitor Radio Frequency (RF), weather conditions, and/or personnel access of remote islands leased on the Kwajalein Atoll for the U.S. Army's Reagan Test Site (RTS). The solutions should be independent of external power sources or communications networks, as there are no cellular or Wi-Fi communications, nor power source, in these areas. The solutions must also be capable of operating in harsh environmental conditions, including heat, humidity, regular rainfall, salt spray, and high atmospheric salinity. The data collected by these sensor nodes will be used for situational awareness, safety, security, and mission planning and support. The solicitation is open for both full or partial solutions, and Phase I proposals with a cost of up to $250,000 for a 6-month period of performance are being accepted. Phase I will involve researching and developing the system/network architecture, designing the hardware components, and proposing power source designs and networking techniques. By the end of Phase I, the awardee should have detailed descriptions of the proposed technologies. In Phase II, the awardee will produce a single prototype that demonstrates the capabilities and methodologies at a minimum of TRL4. They will also develop a user interface and display for situational awareness of sensor control and monitoring. The potential applications of this technology include wireless remote sensing for public safety, health, fitness, and wildlife dual-usages. Some examples of dual uses of remote sensing include anti-poaching efforts, remote environmental sensors enabled by low-Earth orbit satellites, wildfire early recognition sensor systems, agriculture and crop performance monitoring, and urban pollution source detection. For more information and to submit proposals, interested parties can visit the DOD SBIR program website. The solicitation is currently open, and the application due date is March 31, 2025. References: https://www.sciencedirect.com/science/article/abs/pii/S0927775722021823 https://www.sciencedirect.com/science/article/pii/S1877050914009831 http://www.ijpe-online.com/EN/10.23940/ijpe.09.5.p419.mag Keywords: sensors, nodes, Radio Frequency (RF), Reagan Test Site (RTS)
    DOD SBIR 24.4 Annual - Novel Positioning, Navigation, and Timing (PNT) Signal Classification Techniques
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a novel positioning, navigation, and timing (PNT) signal classification techniques. The purpose of this solicitation is to develop the capability to classify signals in real-time that impact navigation systems. The goal is to better understand the type of signals experienced in relevant environments to apply appropriate mitigation techniques. The current navigation systems depend on radio frequency (RF) signals that can be influenced by various interference sources. The challenge is to quickly understand the signal characteristics to react and mitigate negative impacts. The proposed solution aims to build upon AI/Machine Learning (ML) algorithm technologies to perform PNT signal classification in real-time. The project will involve developing two antenna systems capable of detecting and classifying interference signals, collecting relevant signals for training the AI/ML solution, and demonstrating the ability to detect and identify signal types in a relevant environment. The project will have a Phase I and Phase II, with Phase II focusing on the development and demonstration of the antenna systems. The anticipated duration of the project is until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Novel Positioning, Navigation, and Timing (PNT) Signal Classification Techniques
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a novel positioning, navigation, and timing (PNT) signal classification techniques. The purpose of this solicitation is to develop the capability to classify signals in real-time that impact navigation systems. The goal is to better understand the type(s) of signal(s) experienced in relevant environments to apply mitigation techniques before harm can be done. The research will focus on improving performance, cost savings, and expanding the application of the technology sensor solution set to include additional Army aviation assets. The project will involve developing adaptive learning techniques using AI/Machine Learning (ML) algorithms to perform PNT signal classification. The proposed solution aims to build upon the progress made in AI/ML signal classification and move towards real-time signal classification. The project will have a Phase I and Phase II, with Phase II requiring the development of two antenna systems capable of detecting and classifying interference signals in real-time. The project also aims to make the antenna design portable to support upgrading antenna systems and providing support to other antenna systems in the same environment. The anticipated duration of the project is until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR website.