Wideband 16x12 Non-Blocking Radio Frequency Switch
ID: N241-019Type: BOTH
Overview

Topic

Wideband 16x12 Non-Blocking Radio Frequency Switch

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the development of a Wideband 16x12 Non-Blocking Radio Frequency (RF) Switch. The objective is to create a dynamically reconfigurable, minimal latency 6U Virtual Path Cross-Connect (VPX) wideband RF switch that can handle multiple signals from various sources to increase autonomy and address emerging threats. The RF switch should operate from 1.5 MHz to 18 GHz and maintain present size, weight, power, and cooling (SWaPC) constraints. It should be able to route any of the 16 input apertures to any of the 12 output tuner channels while remaining dynamically reconfigurable. The proposed solution should adhere to open interface standards and include an Application Programmer Interface (API) and Interface Control Documents (ICD). The design should address performance metrics such as gain, isolation, noise figure, and switching time. The project will have a Phase I for design and development, Phase II for prototype development and demonstration, and Phase III for refinement, integration, and compliance with military standards. The selected contractor must be U.S. owned and operated with no foreign influence and have the ability to acquire and maintain a secret level facility and Personnel Security Clearances. The technology has potential dual-use applications in the commercial sector, particularly in the field of missile protection for commercial aircraft.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Software Defined RadioHead (SDRH)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Software Defined RadioHead (SDRH)" as part of their SBIR 24.4 Annual solicitation. The objective is to develop a radio agnostic SDRH system that can rapidly adapt the radio carrier frequency among diverse targeted frequency bands using analog and/or digital frequency conversion. This technology will provide additional flexibility to the commander's communication plan. The SDRH design will be a flexible antenna prototype capable of supporting multiple frequencies and radio modules, complementing the C5ISR/CMOSS standard's objective for agnostic hardware. The solicitation is open for Direct to Phase II (DP2) proposals with a maximum cost of $2,000,000 for a 12-month period of performance. Phase II will involve developing a prototype SDRH for evaluation and testing by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center. The solicitation also highlights potential dual-use applications of SDRH technology in industries such as IoT, UAVs, smart cities, and mobile communications. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2638119) or the [DOD SBIR/STTR Opportunities](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/) website.
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website [here](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Development of novel 5G Open RAN (Radio Access Networks) xApp and rApp Applications Open Topic
Active
Department of Defense
The Department of Defense (DoD) is seeking proposals for the development of novel 5G Open RAN (Radio Access Networks) xApp and rApp applications. The focus of this solicitation is on security and security-related network measurement. The DoD anticipates increasing reliance on 5G and FutureG OpenRAN networks and needs tools and techniques to enhance the security and resilience of these networks. The primary use case is in support of DoD network operators, owners, and users who depend on reliable and trustworthy network communications for various DoD missions. The development and deployment of xApps and rApps within the OpenRAN framework represent an opportunity to significantly improve the security of 5G networks. These applications can provide detailed insights into network performance and security metrics, enabling a better understanding of the network's security posture and helping to mitigate potential attacks. Proposed solutions should focus on expanding the capabilities of xApps and rApps to address emerging threats and enhance scalability and efficiency. The Phase I of the project involves presenting a design for at least one high-quality xApp or rApp idea, with a duration of six months. The Phase II, lasting twelve months, focuses on prototype production, test, and evaluation. Phase III will be determined on an as-needed basis to address additional capability development or transition to operational use. The evaluation of proposed solutions will consider factors such as overall impact, false positive/false negative rate, complexity of the operational problem, vulnerability identification rate, adaptability to evolving landscape, policy/regulatory compliance, and adherence to established standards and protocols. For more information and to submit proposals, visit the solicitation agency's website at [solicitation_agency_url]. The application due date is March 31, 2025.
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2496863).