Medium Voltage Alternating Current System Grounding Circuit
ID: N25A-T009Type: BOTH
Overview

Topic

Medium Voltage Alternating Current System Grounding Circuit

Agency

Agency: DODBranch: NAVY

Program

Type: STTRPhase: BOTH
Timeline
    Description

    The Department of Defense, specifically the Navy, is seeking innovative solutions for a Medium Voltage Alternating Current (MVAC) System Grounding Circuit through the Small Business Innovation Research (SBIR) program. The objective is to develop a compact, air-cooled grounding circuit that can operate continuously during a ground fault, dissipating less than 3 kW of heat while accommodating ground currents of up to 20 Amps. This technology is critical for ensuring the reliability of shipboard electrical systems, particularly for vital loads such as propulsion and combat systems, and is applicable to both naval and commercial MVAC systems. The solicitation is set to open on January 8, 2025, with proposals due by February 5, 2025, and further details can be found at the official DOD SBIR website.

    Files
    Title
    Posted
    Similar Opportunities
    RF Frontend Design (RFE) on Gallium Nitride on Silicon (GaN-on-Si) Open Topic -
    DOD
    The Department of Defense, through the Defense Microelectronics Activity (DMEA), is seeking proposals for the design, development, and demonstration of a low-noise amplifier (LNA) and power amplifier (PA) utilizing GlobalFoundries' 200-mm Gallium Nitride on Silicon (GaN-on-Si) technology. The objective is to enhance output power density, linearity, and efficiency in radio communication systems for both military and commercial applications, addressing the current lack of integrated solutions in this technology space. This initiative is critical for improving the performance of RF frontend circuitry, which is essential for radar, communications, and electronic warfare systems. Proposals are due by December 31, 2025, with the opportunity to access government-furnished equipment for prototyping, and interested parties can find more information at the DOD SBIR website.
    Integrated Deployable Microsensors for Chemical Detection -
    DOD
    The Department of Defense (DoD) is seeking proposals for the development of Integrated Deployable Microsensors for Chemical Detection, aimed at providing early warning of chemical threats. The objective is to create a low size, weight, power, and cost (SWaP-C) microsensor capable of detecting chemical weapons agents and pharmaceutical-based agents in vapor and aerosol forms within a critical timeframe of 10 minutes. This technology is crucial for enhancing rapid response and decision-making in both military and civilian contexts, particularly for first responders in environmental detection and health monitoring. Proposals are due by December 31, 2025, with the opportunity opening on December 10, 2025, and further details can be found at the DoD SBIR website.
    Complex Geometries for Extended Wear Respirators Towards Regenerable Particulate Matter Protection -
    DOD
    The Department of Defense is seeking innovative solutions through the SBIR program to develop a rugged, 3D-printable, PFAS-free particulate filtration impactor system for extended-wear respirators in military operational environments. The objective is to create a regenerable filtration system that effectively reduces particulate matter (PM10 and PM2.5) exposure, addressing current limitations such as discomfort, clogging, and single-use constraints, while ensuring minimal breathing resistance during aerobic activities. This technology is crucial for protecting warfighters from cardiovascular and pulmonary diseases associated with high airborne particulate levels. Interested parties should note that the solicitation is set to open on December 10, 2025, with applications due by December 31, 2025, and further details can be found at the provided source link.
    Novel Technologies for CWMD and Related Threats - Open Topic -
    DOD
    The Defense Threat Reduction Agency (DTRA) is seeking innovative solutions through its Small Business Innovation Research (SBIR) program to develop novel technologies for detecting radiological and nuclear threats without the use of specialized sensors. The objective is to utilize signals from existing general-purpose military hardware, commercially available devices, and public data sources to enhance the detection capabilities for weapons of mass destruction (WMD). This initiative is crucial for overcoming the challenges associated with the high costs and lengthy timelines of developing new military hardware for WMD detection. The project is structured in three phases: Phase I focuses on identifying feasible use cases and developing a course of action; Phase II involves building and testing a model or prototype; and Phase III aims to refine the technology for broader dual-use applications in defense, government, and commercial sectors. The solicitation is currently in pre-release status, with an open date set for December 10, 2025, and a close date of December 31, 2025. Interested parties can find more information and submit proposals through the DOD SBIR website.
    Acoustic-based UAS Rainbow Oscillation Refraction Architecture (AURORA) -
    DOD
    The Department of Defense, specifically the Special Operations Command (SOCOM), is seeking innovative research and development proposals for the Acoustic-based UAS Rainbow Oscillation Refraction Architecture (AURORA) under the SBIR program. The objective is to create an acoustic-based communication system that enables small uncrewed aerial systems (sUAS) within a swarm to communicate and determine their relative positions using sound generated by their propellers as a carrier wave. This technology is crucial for military applications where multiple drones operate in close proximity without relying on GPS or radio frequencies, enhancing their operational effectiveness and safety. Interested parties should prepare to submit their proposals by December 31, 2025, with the feasibility study phase (Phase I) focusing on system design options and achievable data rates, followed by prototype development in Phase II. For more details, visit the solicitation agency's website at https://www.dodsbirsttr.mil/topics-app/.
    Microphysiological systems to Assess Pretreatment Immunogenicity and Efficacy (MAGPIE) -
    DOD
    The Defense Threat Reduction Agency (DTRA) is seeking proposals for the development of Microphysiological systems to Assess Pretreatment Immunogenicity and Efficacy (MAGPIE), specifically immune microphysiological systems (iMPS) aimed at evaluating vaccines against high-consequence pathogens. The primary objective is to create iMPS that can replicate known vaccine responses, differentiate vaccine efficacy, and predict the immunogenicity of novel vaccine constructs, thereby addressing the limitations of traditional vaccine development models. This initiative is crucial for enhancing warfighter readiness by facilitating accelerated vaccine development and reducing reliance on traditional animal models. Interested parties should note that the solicitation is set to open on December 10, 2025, with applications due by December 31, 2025, and further details can be found at the DOD SBIR/STTR website.
    Pulsed High-power Laser Accelerators to Study radiation Hardening (PHLASH) -
    DOD
    The Department of Defense, through DARPA, is seeking proposals for the Pulsed High-power Laser Accelerators to Study Radiation Hardening (PHLASH) program, which aims to develop a compact, scalable laser driver for electron beam generation to enhance radiation testing of microelectronic systems intended for space applications. The primary objective is to demonstrate a prototype laser driver capable of generating 50-MeV electron beam energies at a pulse repetition rate exceeding 100 Hz, with a design that can be scaled to 100 GeV at 1 kHz, all within a compact footprint of less than 250 m³. This initiative addresses the limitations of existing heavy-ion accelerator facilities by leveraging Laser Wakefield Acceleration (LWFA) technology, which allows for high-energy electron packet generation over significantly shorter distances. Proposals are due by December 31, 2025, and interested parties can find more information and submit their applications through the official solicitation link at https://www.dodsbirsttr.mil/topics-app/.
    OPEN TOPIC - Tactical CB Visualization -
    DOD
    The Department of Defense (DOD) is seeking innovative solutions through the Small Business Innovation Research (SBIR) program to enhance situational awareness and decision support for Warfighters operating in Chemical and Biological (CB) contested environments. The objective is to develop tactical visualization tools that efficiently integrate, visualize, and communicate tactical data, with a focus on Human-Machine Interface concepts and significant advantages in size, weight, and power (SWAP) demands. Proposed technologies may include augmented reality, sensor visualization, or unique end-user devices, and must comply with Integrated Sensor Architecture (ISA) standards and the Tactical Assault Kit (TAK) Software Development Kit (SDK). The opportunity is currently in the pre-release phase, with an open date of December 10, 2025, and a close date of December 31, 2025, for applications. Interested parties can find more information and submit proposals through the DOD SBIR website.
    Far Forward Manufacturing of CBRN Sensors -
    DOD
    The Department of Defense (DoD) is seeking proposals for the Far Forward Manufacturing (FFM) of Chemical, Biological, Radiological, and Nuclear (CBRN) sensors, as outlined in solicitation number CBD254-008. The objective is to accelerate the production of compact and economical CBRN sensors that require minimal logistical footprints, enabling real-time threat detection for warfighters while reducing reliance on complex supply chains through advanced manufacturing techniques such as 3D printing and biomanufacturing. This initiative is critical for ensuring force readiness and adaptability in modern warfare, with potential dual-use applications in commercial sectors like clinical diagnostics and environmental sensing. Interested parties should note that Phase I proposals are due by December 31, 2025, with potential funding of up to $500,000 available for successful Phase II performers who secure additional non-SBIR/STTR funding.
    Space-Based Interceptors for Boost-Phase Missile Defense in the Endo-Atmospheric Region -
    DOD
    The U.S. Space Force (USSF) is soliciting innovative solutions for space-based interceptors (SBIs) capable of conducting boost-phase missile defense within the endo-atmospheric region, specifically below 120 km altitude. The initiative aims to address critical capability gaps by developing compact, high-performance platforms that enable rapid, precise, and survivable engagements from space, focusing on high-G propulsion systems, advanced seekers, and low-size, weight, and power (SWaP) interceptors integrated into space vehicles. This effort is crucial for establishing a layered missile defense architecture and enhancing national security against evolving missile threats. Interested parties should prepare Direct-to-Phase-II proposals, as Phase I awards will not be made, with applications due by December 31, 2025. For more information, visit the solicitation link at https://www.dodsbirsttr.mil/topics-app/.