Multi-Spectral Infrared Focal Plane Arrays
ID: AF233-0012Type: BOTH
Overview

Topic

Multi-Spectral Infrared Focal Plane Arrays

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2023

Additional Information

https://www.defensesbirsttr.mil/
Timeline
  1. 1
    Release Aug 23, 2023 12:00 AM
  2. 2
    Open Sep 20, 2023 12:00 AM
  3. 3
    Next Submission Due Oct 18, 2023 12:00 AM
  4. 4
    Close Oct 18, 2023 12:00 AM
Description

The Department of Defense (DoD) is seeking proposals for the development of a commercial supplier of infrared detector materials, readout integrated circuits (ROICS), and/or focal plane arrays (FPAs) optimized for multi-spectral-band operation. The goal is to create a product that operates through the infrared atmospheric transmission windows, specifically short-wave infrared (SWIR, 1-2.7 um), mid-wave infrared (MWIR, 3-5 um), or long-wave infrared (LWIR, 8-16 um). The materials and designs should be optimized for multi-band operation, with an emphasis on temporally simultaneous and/or spatially co-registered data capture. The technology has potential applications in industries such as defense, pharmaceuticals, healthcare, and manufacturing. The project will be conducted in three phases: Phase I involves developing an innovative enabling component and assessing its performance and commercial viability. Phase II focuses on producing and optimizing prototype components and integrating them with FPAs. Phase III involves refining the manufacturing process, building a prototype camera, and identifying interested manufacturers and integrators for technology transition. The solicitation is open until October 18, 2023. For more information, visit the solicitation link.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website [here](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Low-cost Longwave Bolometer Camera Fabrication Techniques
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Low-cost Longwave Bolometer Camera Fabrication Techniques" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop novel technologies and fabrication techniques to reduce the cost of sensor payloads based on resistive microbolometer technology. The focus is on reducing the unit cost of the focal plane array and supporting a low-cost sensor. The solutions should be ready to transition into a camera module development effort by the end of Phase II. The solicitation emphasizes the importance of thermal longwave infrared (LWIR) capabilities in various Army applications and the need for a thermal sensor payload with high-definition array and dramatically reduced unit price. The solutions can involve novel manufacturing techniques, new materials systems, innovative component or module designs, or other approaches. Direct to Phase II contracts will focus on demonstrating enabling developments, and Phase II sequential efforts will deliver a prototype payload meeting the specified requirements for evaluation by Army Unmanned Aircraft Systems (UAS) or other programs. Phase I of the solicitation is only accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for an 18-month period of performance. DP2 proposals are highly encouraged if they meet the requirements. Proposals should demonstrate the estimated cost reduction compared to products made with current fabrication techniques and discuss the impact on size, weight, and power of a complete camera module. Initial ideas on potential paths for integration into a production camera module should also be discussed. Phase II involves designing and fabricating a prototype device that demonstrates the proposed solution to reduce thermal sensor payload unit cost. The impact of the solution on the unit price of a final sensor payload and its incorporation into such a payload should be discussed. Relevant interfaces should be defined and documented, and potential partnerships with integrators or other companies for follow-on efforts should be considered. In Phase III, the solicitation highlights the potential dual-use applications of leveraging bolometer manufacturing methods for low-cost long wave infrared (LWIR) sensors. These applications include smartphone camera augmentation, UAV camera augmentation (specifically via the Office of Naval Research), home security systems, and climate tech via quantum dot (QD) development. Overall, this solicitation seeks innovative solutions to reduce the cost of thermal sensor payloads based on resistive microbolometer technology, with potential applications in various military and commercial sectors.
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2496863).
DOD SBIR 24.4 Annual - Biometrics for Multi Factor Authentication
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Biometrics for Multi Factor Authentication" as part of their SBIR 24.4 Annual solicitation. The specific branch for this topic is the Army, and the topic number is A244-008. The objective of this solicitation is to develop dual-band Mid-wave Infrared/Long-Wave Infrared (MWIR/LWIR) Infrared Focal Plane Array (IR FPA) technology that can meet Third Generation Forward Looking Infrared (3GEN FLIR) performance objectives. This technology will benefit all forms of Army and DOD night vision sensors, including individual soldier, ground vehicle, unmanned vehicles, and aircraft. The combination of MWIR & LWIR imaging increases the ability to penetrate fog and dust clouds and provides resilience against stray light artifacts from bright sources. The project will focus on the use of Antimonide-based strained layer superlattices (SLS) as a cost-effective and high yield detector material for dual-band FPAs. The project will be conducted in phases, with Phase I accepting Direct to Phase II (DP2) proposals. Phase II will involve the fabrication of MWIR/LWIR dual-band SLS FPAs that meet 3GEN FLIR performance objectives. The project also has potential dual-use applications in areas such as enhanced vision for emergency response, earth observation, autonomous driving, maritime navigation, and security systems. The project duration is not specified, and funding specifics can be found on the grants.gov website. For more information and to submit a proposal, visit the SBIR topic link provided.
DOD SBIR 24.4 Annual - Biometrics for Multi Factor Authentication
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Biometrics for Multi Factor Authentication" as part of their SBIR 24.4 Annual solicitation. The specific branch for this topic is the Army, and the topic number is A244-008. The objective of this solicitation is to develop dual-band Mid-wave Infrared/Long-Wave Infrared (MWIR/LWIR) Infrared Focal Plane Array (IR FPA) technology that can meet Third Generation Forward Looking Infrared (3GEN FLIR) performance objectives. This technology will benefit all forms of Army and DOD night vision sensors, including individual soldier, ground vehicle, unmanned vehicles, and aircraft. The combination of MWIR & LWIR imaging increases the ability to penetrate fog and dust clouds and provides resilience against stray light artifacts from bright sources. The project will focus on the use of Antimonide-based strained layer superlattices (SLS) as a cost-effective and high yield detector material for dual-band FPAs. The project will be conducted in multiple phases, starting with Direct to Phase II (DP2) proposals, followed by fabrication capability demonstration in Phase II, and finally, dual-use applications in Phase III. The potential applications for this technology include enhanced vision for emergency response, earth observation, autonomous driving, maritime navigation, and security systems. The solicitation is currently open, and the application due date is March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.