Low-cost Longwave Bolometer Camera Fabrication Techniques
ID: A244-025Type: BOTH
Overview

Topic

Low-cost Longwave Bolometer Camera Fabrication Techniques

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for the topic "Low-cost Longwave Bolometer Camera Fabrication Techniques" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop novel technologies and fabrication techniques to reduce the cost of sensor payloads based on resistive microbolometer technology. The focus is on reducing the unit cost of the focal plane array and supporting a low-cost sensor. The solutions should be ready to transition into a camera module development effort by the end of Phase II.

    The solicitation emphasizes the importance of thermal longwave infrared (LWIR) capabilities in various Army applications and the need for a thermal sensor payload with high-definition array and dramatically reduced unit price. The solutions can involve novel manufacturing techniques, new materials systems, innovative component or module designs, or other approaches. Direct to Phase II contracts will focus on demonstrating enabling developments, and Phase II sequential efforts will deliver a prototype payload meeting the specified requirements for evaluation by Army Unmanned Aircraft Systems (UAS) or other programs.

    Phase I of the solicitation is only accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for an 18-month period of performance. DP2 proposals are highly encouraged if they meet the requirements. Proposals should demonstrate the estimated cost reduction compared to products made with current fabrication techniques and discuss the impact on size, weight, and power of a complete camera module. Initial ideas on potential paths for integration into a production camera module should also be discussed.

    Phase II involves designing and fabricating a prototype device that demonstrates the proposed solution to reduce thermal sensor payload unit cost. The impact of the solution on the unit price of a final sensor payload and its incorporation into such a payload should be discussed. Relevant interfaces should be defined and documented, and potential partnerships with integrators or other companies for follow-on efforts should be considered.

    In Phase III, the solicitation highlights the potential dual-use applications of leveraging bolometer manufacturing methods for low-cost long wave infrared (LWIR) sensors. These applications include smartphone camera augmentation, UAV camera augmentation (specifically via the Office of Naval Research), home security systems, and climate tech via quantum dot (QD) development.

    Overall, this solicitation seeks innovative solutions to reduce the cost of thermal sensor payloads based on resistive microbolometer technology, with potential applications in various military and commercial sectors.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD SBIR 24.4 Annual - Miniaturization of Hyperspectral Sensors for UAS Applications
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Miniaturization of Hyperspectral Sensors for UAS Applications" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop a compact, passive, day/night capable hyperspectral sensor that meets Size, Weight, and Power (SWaP) requirements for integration into ongoing modernization programs. The sensor should result in cost savings and reductions in weight, power, and volume without sacrificing capability. The sensor payload will be developed for use on smaller Unmanned Aerial Systems (UASs). Historically, airborne hyperspectral imaging (HSI) systems have been limited to larger aircraft due to heavy and complex optical components, high power consumption, and large ancillary hardware. This limits accessibility and availability. The solicitation is accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for a 24-month period of performance. Proposers interested in submitting a DP2 proposal must provide documentation to substantiate the scientific and technical merit and feasibility equivalent to a Phase I project. During Phase II, firms should complete the sensor design, fabricate and test the component, integrate it into a gimbal for final integration onto a Class II or smaller UAS platform, refine the design as necessary, and validate sensor payload performance in a government-run laboratory. They should also define relevant interfaces for integration and lay out a high-level plan for how the component could be integrated into a UAS platform. In Phase III, the sensor/gimbal payload should be integrated into a prototype system for field collection. The sensor should be deployed on at least one test event to observe performance and generate quantitative/qualitative sensor performance data. The topic references relevant research papers on hyperspectral imaging systems. The keywords for this topic are Hyperspectral, VNIR, SWIR, and LWIR. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation page on grants.gov: link.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Biometrics for Multi Factor Authentication
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Biometrics for Multi Factor Authentication" as part of their SBIR 24.4 Annual solicitation. The specific branch for this topic is the Army, and the topic number is A244-008. The objective of this solicitation is to develop dual-band Mid-wave Infrared/Long-Wave Infrared (MWIR/LWIR) Infrared Focal Plane Array (IR FPA) technology that can meet Third Generation Forward Looking Infrared (3GEN FLIR) performance objectives. This technology will benefit all forms of Army and DOD night vision sensors, including individual soldier, ground vehicle, unmanned vehicles, and aircraft. The combination of MWIR & LWIR imaging increases the ability to penetrate fog and dust clouds and provides resilience against stray light artifacts from bright sources. The project will focus on the use of Antimonide-based strained layer superlattices (SLS) as a cost-effective and high yield detector material for dual-band FPAs. The project will be conducted in phases, with Phase I accepting Direct to Phase II (DP2) proposals. Phase II will involve the fabrication of MWIR/LWIR dual-band SLS FPAs that meet 3GEN FLIR performance objectives. The project also has potential dual-use applications in areas such as enhanced vision for emergency response, earth observation, autonomous driving, maritime navigation, and security systems. The project duration is not specified, and funding specifics can be found on the grants.gov website. For more information and to submit a proposal, visit the SBIR topic link provided.
    DOD SBIR 24.4 Annual - Biometrics for Multi Factor Authentication
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Biometrics for Multi Factor Authentication" as part of their SBIR 24.4 Annual solicitation. The specific branch for this topic is the Army, and the topic number is A244-008. The objective of this solicitation is to develop dual-band Mid-wave Infrared/Long-Wave Infrared (MWIR/LWIR) Infrared Focal Plane Array (IR FPA) technology that can meet Third Generation Forward Looking Infrared (3GEN FLIR) performance objectives. This technology will benefit all forms of Army and DOD night vision sensors, including individual soldier, ground vehicle, unmanned vehicles, and aircraft. The combination of MWIR & LWIR imaging increases the ability to penetrate fog and dust clouds and provides resilience against stray light artifacts from bright sources. The project will focus on the use of Antimonide-based strained layer superlattices (SLS) as a cost-effective and high yield detector material for dual-band FPAs. The project will be conducted in multiple phases, starting with Direct to Phase II (DP2) proposals, followed by fabrication capability demonstration in Phase II, and finally, dual-use applications in Phase III. The potential applications for this technology include enhanced vision for emergency response, earth observation, autonomous driving, maritime navigation, and security systems. The solicitation is currently open, and the application due date is March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Thermal Reflex Sight
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a Thermal Reflex Sight (TRS) for use by Special Operations Forces in short to medium range target engagement scenarios. The TRS should be a weapon mounted capability that combines a long wave infrared thermal weapons sight with a reflex day optic sight, allowing for targeted engagements in varied lighting conditions. The TRS should be optimized for short to medium range engagements and should not be a "shoot from the hip" sight. The objective of Phase I is to conduct a feasibility study to assess the possible options that satisfy the requirements. Phase II involves the development, installation, and demonstration of a prototype system. The resulting system could have applications in various military and law enforcement settings. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Low Cost Persistent Multi Sensor Surveillance
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Low Cost Persistent Multi Sensor Surveillance" as part of their SBIR program. The objective of this topic is to develop environmentally hardened sensor nodes that can persistently monitor Radio Frequency (RF), weather conditions, and/or personnel access of remote islands leased on the Kwajalein Atoll for the U.S. Army's Reagan Test Site (RTS). The solutions should be independent of external power sources or communications networks, as there are no cellular or Wi-Fi communications, nor power source, in these areas. The solutions must also be capable of operating in harsh environmental conditions, including heat, humidity, regular rainfall, salt spray, and high atmospheric salinity. The data collected by these sensor nodes will be used for situational awareness, safety, security, and mission planning and support. The solicitation is open for both full or partial solutions, and Phase I proposals with a cost of up to $250,000 for a 6-month period of performance are being accepted. Phase I will involve researching and developing the system/network architecture, designing the hardware components, and proposing power source designs and networking techniques. By the end of Phase I, the awardee should have detailed descriptions of the proposed technologies. In Phase II, the awardee will produce a single prototype that demonstrates the capabilities and methodologies at a minimum of TRL4. They will also develop a user interface and display for situational awareness of sensor control and monitoring. The potential applications of this technology include wireless remote sensing for public safety, health, fitness, and wildlife dual-usages. Some examples of dual uses of remote sensing include anti-poaching efforts, remote environmental sensors enabled by low-Earth orbit satellites, wildfire early recognition sensor systems, agriculture and crop performance monitoring, and urban pollution source detection. For more information and to submit proposals, interested parties can visit the DOD SBIR program website. The solicitation is currently open, and the application due date is March 31, 2025. References: https://www.sciencedirect.com/science/article/abs/pii/S0927775722021823 https://www.sciencedirect.com/science/article/pii/S1877050914009831 http://www.ijpe-online.com/EN/10.23940/ijpe.09.5.p419.mag Keywords: sensors, nodes, Radio Frequency (RF), Reagan Test Site (RTS)
    DOD SBIR 24.4 Annual - Thermal Reflex Sight
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a Thermal Reflex Sight (TRS) for use by Special Operations Forces in short to medium range target engagement scenarios. The TRS should be a weapon mounted capability that combines a long wave infrared thermal weapons sight with a reflex day optic sight, allowing for targeted engagements in varied lighting conditions. The TRS should be optimized for short to medium range engagements and should not be a "shoot from the hip" sight. The objective of Phase I is to conduct a feasibility study to assess the possible options that satisfy the requirements, while Phase II involves developing and demonstrating a prototype system. The resulting system could have applications in various military and law enforcement settings. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Advanced Miniature Mission Processor for Hyperspectral Applications
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Advanced Miniature Mission Processor for Hyperspectral Applications" as part of their SBIR 24.4 Annual solicitation. The research focuses on developing a low-size, weight, and power (SWaP) high-performance computer for an Unmanned Aircraft Systems (UAS)-integrated hyperspectral imaging (HSI) camera. The objective is to meet the necessary SWaP requirements for integration into ongoing modernization programs. The mission processor will aggregate multiple core payload operation functions and should be compliant with current Sensor Open System Architecture (SOSA) Small Form Factor (SFF) standards. The project duration is 24 months, and the funding for Phase II proposals is up to $2,000,000. The ultimate goal is to integrate the mission processor with a sensor/gimbal into a prototype system for field collection and observe its performance. Relevant references include research papers on hyperspectral imaging and signal processing approaches. Keywords for this topic include hyperspectral, real-time processor, near-real-time processor, and mission processor. For more information and to submit a proposal, visit the DOD SBIR website.