TECHNOLOGY TRANSFER OPPORTUNITY: High Accurate Position Detection and Shape Sensing with Fiber Optics (LAR-TOPS-79)
ID: T2P-LaRC-00128Type: Special Notice
Overview

Buyer

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONUS

PSC

MISCELLANEOUS ITEMS (9999)
Timeline
    Description

    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a high accurate position detection and shape sensing technology using fiber optics. This technology, developed by NASA's Langley Research Center, offers 10 times greater positional accuracy than comparable optical techniques. It uses low reflectance Fiber Bragg Grating (FBG) strain sensors in a multi-core fiber to determine the three-dimensional position of any point along the fiber. This method can be used in monitoring applications such as structures, medical devices, or robotics to determine precise deflection, end position, and location in near real time. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding will be provided by NASA in conjunction with these potential licenses.

    Point(s) of Contact
    NASA’s Technology Transfer Program
    Agency-Patent-Licensing@mail.nasa.gov
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY TRANSFER OPPORTUNITY: Guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs) (LAR-TOPS-303)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs). This technology is used to monitor the cure rate of resins and detect defects in carbon fiber reinforced polymer composites, which are extensively used in aircraft, automotive, and other applications. The system measures temperature, strain, and guided waves during cure, allowing for life-cycle monitoring and damage detection. It is applicable to manufacturers of aircraft parts, marine hull sections, high-speed rail sections, automotive parts, and building parts. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Smart Optics Material Characterization System (LAR-TOPS-76)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Smart Optics Material Characterization System. This system, developed by NASA's Langley Research Center, is a wireless, open-circuit SansEC sensor that can detect the presence of chemicals without being in contact with them. It uses a unique thin-film design and a chemical reactant to detect specific chemicals in caustic or harsh environments. The sensors are cost-effective and environmentally friendly to manufacture and use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: More Reliable Doppler Lidar for Autonomous Navigation (LAR-TOPS-351)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a more reliable Doppler Lidar for autonomous navigation. This technology, known as Navigation Doppler Lidar (NDL), was pioneered by NASA for precision navigation and executing well-controlled landings on surfaces like the moon. The NDL utilizes the Frequency Modulated Continuous Wave (FMCW) technique to determine the distance to the target and the velocity between the sensor and target. However, the current sensor cannot determine the sign (+/-) of the signal frequencies, resulting in false measurements of range and velocity. NASA has developed an operational prototype of a method and algorithm that works with the receiver to correct this problem. The technology is available for license rights on an exclusive or nonexclusive basis and may include specific fields of use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information and to express interest, please visit the provided links. No follow-on procurement is expected from responses to this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: RFID-Based Rotary Position Sensor (MSC-TOPS-82)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market an RFID-Based Rotary Position Sensor. This sensor, developed at the NASA Johnson Space Center, can be used to sense the angular position of rotating systems. It can be implemented in a controller to refine the rotation angle or used as a position/orientation sensor. The sensor is part of a suite of RFID-based technologies developed by NASA to monitor and manage inventory based on passive RFID sensors. It can track bulk levels or discrete quantities of materials within a container without attaching RFID tags to each item. The sensor was initially created for a hand-crank dispenser system but can be used in various applications to sense or control the angular position of rotating systems. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided by NASA in conjunction with these potential licenses. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Material for Structural Health Monitoring (LAR-TOPS-195)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a novel polymer material developed by NASA Langley Research Center. The material is used as a real-time structural health monitoring sensor, generating a signal in response to a mechanical force. It is highly elastic, allowing for a large range of measurable strain levels, and is highly durable. The material can be manufactured into micro- and/or nanofibers and can be spun directly onto composite panels or embedded within the material. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Electroactive Scaffold (LAR-TOPS-200)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a novel three-dimensional scaffold structure developed at NASA's Langley Research Center. This scaffold utilizes electroactive fibers for tissue and/or stem cell engineering, providing biochemical, mechanical, and electrical cues to mimic the native biological environment. The technology aims to develop novel tissue constructs and direct stem cells to differentiate down controlled pathways. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Laser Linear Frequency Modulation System (LAR-TOPS-95)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the Laser Linear Frequency Modulation System (LAR-TOPS-95). This breakthrough technology improves laser frequency modulation for precision laser radar (lidar) applications. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Photogrammetric Method for Calculating Relative Orientation (LAR-TOPS-38)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a photogrammetric method for calculating relative orientation. This technology, developed by NASA's Langley Research Center, uses a simplified photogrammetric technique to quantitatively capture the relative orientation of objects in six degrees of freedom (6-DOF). It utilizes one or more cameras with non-overlapping fields of view (FOV) to record strategically placed photogrammetric targets. Originally developed for evaluating spacecraft crew modules and trajectory analysis of military aircraft, this technology has various applications where detecting relative positioning is important. The equipment requirements include cameras, photogrammetric targets, a data storage device, and a processing PC. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Wireless Sensor for Pharmaceutical Packaging and Monitoring Applications (LAR-TOPS-77)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a wireless sensor for pharmaceutical packaging and monitoring applications. This sensor, developed by NASA's Langley Research Center, eliminates the need for physical contact and can monitor various attributes of a container, such as liquid or powder levels, temperature, changes caused by spoilage, and tampering. The sensor is damage resilient, environmentally friendly, and can measure multiple physical attributes simultaneously. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Method of Non-Destructive Evaluation of Composites (LAR-TOPS-120)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a new Non-Destructive Testing (NDT) method for identifying and characterizing hidden damage in composite materials. This technology, developed by NASA's Langley Research Center, uses trapped energy analysis to detect and characterize damage that was previously obscured. The method requires only single sided access to the test specimen and provides a better understanding of composite damage, which is essential for repair and replacement decisions for aerospace composites. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice.