TECHNOLOGY TRANSFER OPPORTUNITY: Guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs) (LAR-TOPS-303)
ID: T2P-LaRC-0157Type: Special Notice
Overview

Buyer

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNASA LANGLEY RESEARCH CENTERHAMPTON, VA, 23681, USA

NAICS

Space Research and Technology (927110)

PSC

MISCELLANEOUS ITEMS (9999)
Timeline
    Description

    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs). This technology is used to monitor the cure rate of resins and detect defects in carbon fiber reinforced polymer composites, which are extensively used in aircraft, automotive, and other applications. The system measures temperature, strain, and guided waves during cure, allowing for life-cycle monitoring and damage detection. It is applicable to manufacturers of aircraft parts, marine hull sections, high-speed rail sections, automotive parts, and building parts. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.

    Point(s) of Contact
    NASA’s Technology Transfer Program
    Agency-Patent-Licensing@mail.nasa.gov
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY TRANSFER OPPORTUNITY: System for In-situ Defect Detection in Composites During Cure (LAR-TOPS-327)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for in-situ defect detection in composites during cure. This technology, developed by NASA Langley Research Center, is an automated ultrasonic scanning system that actively scans for defects in composites during the cure process. It provides real-time monitoring of defect formation and movement, offering a better understanding of defect sources and sinks. The system consists of an ultrasonic portable automated C-Scan system with an attached ultrasonic contact probe, enclosed in an insulated vessel placed inside an autoclave. It can be used for non-destructive evaluation of composites in an oven or an autoclave, including thermosets, thermoplastics, composite laminates, high-temperature resins, and ceramics. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, please visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Method of Non-Destructive Evaluation of Composites (LAR-TOPS-120)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a new Non-Destructive Testing (NDT) method for identifying and characterizing hidden damage in composite materials. This technology, developed by NASA's Langley Research Center, uses trapped energy analysis to detect and characterize damage that was previously obscured. The method requires only single sided access to the test specimen and provides a better understanding of composite damage, which is essential for repair and replacement decisions for aerospace composites. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247). This technology provides a methodology to measure damage onset and growth in composite structures during fatigue loading. It combines thermal and acoustic emission nondestructive evaluation techniques to detect damage formation and growth. The technology can be used for improved safety and performance of composite structures during their life cycle. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Material for Structural Health Monitoring (LAR-TOPS-195)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a novel polymer material developed by NASA Langley Research Center. The material is used as a real-time structural health monitoring sensor, generating a signal in response to a mechanical force. It is highly elastic, allowing for a large range of measurable strain levels, and is highly durable. The material can be manufactured into micro- and/or nanofibers and can be spun directly onto composite panels or embedded within the material. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: AERoBOND: Large-scale Composite Manufacturing (LAR-TOPS-357)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the AERoBOND technology for large-scale composite manufacturing. This technology offers a method for manufacturing composites at scale with the reliability of co-cure in a bonded assembly process. It utilizes novel epoxy and barrier ply layers to enable the bonding of large, complex composites without the need for redundant fasteners, reducing assembly time and cost. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    Conductive Carbon Fiber Polymer Composite (LAR-TOPS-370)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Conductive Carbon Fiber Polymer Composite. This new composite material, developed by NASA, has a high thermal conductivity and combines the benefits of a carbon fiber composite with the high thermal conductivity of metal alloys. It can be used in aerospace structures, automotive or electronics applications, and in-space applications such as heat exchangers or radiators for removing carbon dioxide from the crew cabin atmosphere. The composite has shown significant increases in thermal conductivity compared to typical carbon fiber composites and has more than twice the thermal conductivity of the Aluminum 6061 typically used in the aerospace industry. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    Origami-based Deployable Fiber Reinforced Composites (LAR-TOPS-372)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market an origami-based deployable fiber reinforced composite technology. This technology, developed by NASA Langley Research Center, is a new UV-curable polymer carbon fiber composite that is used to create stronger and more reliable deployable space structures. These structures include beams for deployable habitats, booms, solar array frames, and antenna supports. The origami-based composite structures are lightweight, compactly packaged, and can be easily deployed using the polymer shape memory effect. The composite material does not require high temperature baking and can be solidified using UV light. The structures have a high strength capacity and are currently at technology readiness level 4. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: In-situ Characterization and Inspection of Additive Manufacturing Deposits using Transient Infrared Thermography (LAR-TOPS-265)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology related to in-situ characterization and inspection of additive manufacturing deposits using transient infrared thermography. This technology provides a more reliable non-destructive evaluation method for measuring material properties and detecting defects during the additive manufacturing process. It has applications in various industries including industrial manufacturing, medical, architecture, aerospace, and automotive. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Smart Optics Material Characterization System (LAR-TOPS-76)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Smart Optics Material Characterization System. This system, developed by NASA's Langley Research Center, is a wireless, open-circuit SansEC sensor that can detect the presence of chemicals without being in contact with them. It uses a unique thin-film design and a chemical reactant to detect specific chemicals in caustic or harsh environments. The sensors are cost-effective and environmentally friendly to manufacture and use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Cord Tension Measurement Device (C-Gauge) (MSC-TOPS-83)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the Cord Tension Measurement Device (C-Gauge) (MSC-TOPS-83). The C-Gauge is a non-invasive tension measurement device for axial loaded cords used in cordage-based flexible structure systems such as parachutes and inflatable structures. It allows engineers to test cordage-based structures without severing the cords and provides a non-invasive way to measure the tension and loading of the structural components. The C-Gauge has potential applications in various fields including parachutes, inflatable structures, hot air balloons, weather balloons, blimps, sails, and parasails. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS) at https://technology.nasa.gov/patent/MSC-TOPS-83. For more information, contact NASA's Technology Transfer Program at Agency-Patent-Licensing@mail.nasa.gov. No follow-on procurement is expected from this notice.