TECHNOLOGY TRANSFER OPPORTUNITY: RFID-Based Rotary Position Sensor (MSC-TOPS-82)
ID: T2P-JSC-00044Type: Special Notice
Overview

Buyer

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNASA HEADQUARTERSWASHINGTON, DC, 20546, USA

NAICS

Space Research and Technology (927110)

PSC

MISCELLANEOUS ITEMS (9999)
Timeline
    Description

    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market an RFID-Based Rotary Position Sensor. This sensor, developed at the NASA Johnson Space Center, can be used to sense the angular position of rotating systems. It can be implemented in a controller to refine the rotation angle or used as a position/orientation sensor. The sensor is part of a suite of RFID-based technologies developed by NASA to monitor and manage inventory based on passive RFID sensors. It can track bulk levels or discrete quantities of materials within a container without attaching RFID tags to each item. The sensor was initially created for a hand-crank dispenser system but can be used in various applications to sense or control the angular position of rotating systems. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided by NASA in conjunction with these potential licenses. For more information, visit the NASA Technology Transfer Portal.

    Point(s) of Contact
    NASA’s Technology Transfer Program
    Agency-Patent-Licensing@mail.nasa.gov
    Files
    No associated files provided.
    Lifecycle
    Similar Opportunities
    TECHNOLOGY TRANSFER OPPORTUNITY: Split-Ring Torque Sensor (MSC-TOPS-81)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the Split-Ring Torque Sensor (SRTS). The SRTS is a device developed by NASA in collaboration with Oceaneering and The Florida Institute for Human and Machine Cognition. It uses optical sensors to measure the position, velocity, and torque of a rotating system. The SRTS was created for use in NASA's X1 robotic exoskeleton, which is a wearable exercise machine designed to provide resistance against leg movement for astronauts in future missions. The SRTS offers greater flexibility in tailoring for specific applications and requirements and has potential uses in various fields including robotics, medical, aerospace & defense, automotive, testing & measurement, and industrial markets. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Wireless Sensor for Pharmaceutical Packaging and Monitoring Applications (LAR-TOPS-77)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a wireless sensor for pharmaceutical packaging and monitoring applications. This sensor, developed by NASA's Langley Research Center, eliminates the need for physical contact and can monitor various attributes of a container, such as liquid or powder levels, temperature, changes caused by spoilage, and tampering. The sensor is damage resilient, environmentally friendly, and can measure multiple physical attributes simultaneously. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: High Accurate Position Detection and Shape Sensing with Fiber Optics (LAR-TOPS-79)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a high accurate position detection and shape sensing technology using fiber optics. This technology, developed by NASA's Langley Research Center, offers 10 times greater positional accuracy than comparable optical techniques. It uses low reflectance Fiber Bragg Grating (FBG) strain sensors in a multi-core fiber to determine the three-dimensional position of any point along the fiber. This method can be used in monitoring applications such as structures, medical devices, or robotics to determine precise deflection, end position, and location in near real time. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding will be provided by NASA in conjunction with these potential licenses.
    TECHNOLOGY TRANSFER OPPORTUNITY: Wireless Temperature Sensor Having No Electrical Connections (LAR-TOPS-193)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a wireless temperature sensor that does not require an electrical connection. This sensor, built on NASA's SansEC sensor platform, is damage tolerant, wireless, flexible, precise, and inexpensive. One potential application is for tire temperature sensors. The sensor is made up of dielectric materials tuned to accurately measure a variable and wide range of temperatures. It is powered by an external magnetic field and is suitable for temperature sensing on non-conductive surfaces where robust and wireless sensors are required. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Smart Optics Material Characterization System (LAR-TOPS-76)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Smart Optics Material Characterization System. This system, developed by NASA's Langley Research Center, is a wireless, open-circuit SansEC sensor that can detect the presence of chemicals without being in contact with them. It uses a unique thin-film design and a chemical reactant to detect specific chemicals in caustic or harsh environments. The sensors are cost-effective and environmentally friendly to manufacture and use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: More Reliable Doppler Lidar for Autonomous Navigation (LAR-TOPS-351)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a more reliable Doppler Lidar for autonomous navigation. This technology, known as Navigation Doppler Lidar (NDL), was pioneered by NASA for precision navigation and executing well-controlled landings on surfaces like the moon. The NDL utilizes the Frequency Modulated Continuous Wave (FMCW) technique to determine the distance to the target and the velocity between the sensor and target. However, the current sensor cannot determine the sign (+/-) of the signal frequencies, resulting in false measurements of range and velocity. NASA has developed an operational prototype of a method and algorithm that works with the receiver to correct this problem. The technology is available for license rights on an exclusive or nonexclusive basis and may include specific fields of use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information and to express interest, please visit the provided links. No follow-on procurement is expected from responses to this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Damage and Tamper Detection Sensor System (LAR-TOPS-9)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Damage and Tamper Detection Sensor System. This wireless sensor system, known as SansEC, can be placed on or embedded in materials and structures to monitor for and detect damage. It can also detect package tampering and pilfering. The system consists of multiple pairs of inductor-capacitor sensors with no electrical connections, which are placed throughout the material being monitored for damage. Changes in resonant frequency indicate strains, breaks, or damage location within the material. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Wireless Electrical Devices Using Floating Electrodes (LAR-TOPS-83)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market wireless electrical devices using floating electrodes. This technology, developed by NASA's Langley Research Center, allows for the development of electrical devices such as sensors that require no physical contact with the properties being measured. The technology utilizes the SansEC circuit, which is damage resilient and environmentally friendly to manufacture and use. It uses a magnetic field response measurement acquisition device to provide power and acquire physical property measurements. The technology enables applications such as sensors for axial load force, linear displacement, rotation, strain, pressure, torque, and motion sensing, as well as unique designs for wireless keypads, rotational dials, and energy storage. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided by NASA in conjunction with these potential licenses. No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Photogrammetric Method for Calculating Relative Orientation (LAR-TOPS-38)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a photogrammetric method for calculating relative orientation. This technology, developed by NASA's Langley Research Center, uses a simplified photogrammetric technique to quantitatively capture the relative orientation of objects in six degrees of freedom (6-DOF). It utilizes one or more cameras with non-overlapping fields of view (FOV) to record strategically placed photogrammetric targets. Originally developed for evaluating spacecraft crew modules and trajectory analysis of military aircraft, this technology has various applications where detecting relative positioning is important. The equipment requirements include cameras, photogrammetric targets, a data storage device, and a processing PC. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Circumferential Scissor Spring Enhances Precision in Hand Controllers (MSC-TOPS-113)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a circumferential scissor spring mechanism. This mechanism enhances precision in hand controllers by improving the restorative force and providing better feedback to the user. The technology is currently implemented on NASAs Orion Spacecraft training simulators and can be used in various applications such as drive systems, industrial automation, measuring technology, mobile machinery, and gaming systems. Interested parties can submit a license application through NASA’s Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.