Ultra-Broadband High-Definition High-Frame Rate NIR-MWIR Imager
ID: SF241-0022Type: BOTH
Overview

Topic

Ultra-Broadband High-Definition High-Frame Rate NIR-MWIR Imager

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the development of an Ultra-Broadband High-Definition High-Frame Rate NIR-MWIR Imager. This technology falls under the Integrated Sensing and Cyber critical technology area. The objective is to create an infrared imager with a wide bandpass ranging from the Near Infrared (NIR) to the Mid-Wave Infrared (MWIR) spectrum, specifically from 0.7 micrometers to 5.5 micrometers.

The imager will be used to characterize signatures of military targets, including missile plume and hardbody signatures, in both static and free flight tests. This information will support the design and testing of missile warning and countermeasure systems. The imager will also have applications in temperature/emissivity determination of hypersonic thermal protection systems during ground tests. The use of the infrared detector material InAsSb is encouraged.

The project will be conducted in two phases. Phase I will focus on feasibility and conceptual design, including an analysis of alternatives and identification of high-risk technical elements. Phase II will involve the development of iterative prototypes and the delivery of a fully operational prototype imager.

In Phase III, a limited production of imagers will be conducted for integration into existing signature measurement systems. The technology will have wide military applications for surveillance, night vision, target detection, identification, and tracking. Additionally, there are potential commercial applications in security, surveillance, non-contact imaging thermometry for manufacturing, and other defense applications.

The solicitation was released on November 29, 2023, and the application due date was February 21, 2024. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website [here](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2496863).
DOD SBIR 24.4 Annual - Low-cost Longwave Bolometer Camera Fabrication Techniques
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Low-cost Longwave Bolometer Camera Fabrication Techniques" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop novel technologies and fabrication techniques to reduce the cost of sensor payloads based on resistive microbolometer technology. The focus is on reducing the unit cost of the focal plane array and supporting a low-cost sensor. The solutions should be ready to transition into a camera module development effort by the end of Phase II. The solicitation emphasizes the importance of thermal longwave infrared (LWIR) capabilities in various Army applications and the need for a thermal sensor payload with high-definition array and dramatically reduced unit price. The solutions can involve novel manufacturing techniques, new materials systems, innovative component or module designs, or other approaches. Direct to Phase II contracts will focus on demonstrating enabling developments, and Phase II sequential efforts will deliver a prototype payload meeting the specified requirements for evaluation by Army Unmanned Aircraft Systems (UAS) or other programs. Phase I of the solicitation is only accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for an 18-month period of performance. DP2 proposals are highly encouraged if they meet the requirements. Proposals should demonstrate the estimated cost reduction compared to products made with current fabrication techniques and discuss the impact on size, weight, and power of a complete camera module. Initial ideas on potential paths for integration into a production camera module should also be discussed. Phase II involves designing and fabricating a prototype device that demonstrates the proposed solution to reduce thermal sensor payload unit cost. The impact of the solution on the unit price of a final sensor payload and its incorporation into such a payload should be discussed. Relevant interfaces should be defined and documented, and potential partnerships with integrators or other companies for follow-on efforts should be considered. In Phase III, the solicitation highlights the potential dual-use applications of leveraging bolometer manufacturing methods for low-cost long wave infrared (LWIR) sensors. These applications include smartphone camera augmentation, UAV camera augmentation (specifically via the Office of Naval Research), home security systems, and climate tech via quantum dot (QD) development. Overall, this solicitation seeks innovative solutions to reduce the cost of thermal sensor payloads based on resistive microbolometer technology, with potential applications in various military and commercial sectors.
DOD SBIR 24.4 Annual - Lightweight AI-enabled image processing for Soldier-borne thermal imagers
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for lightweight AI-enabled image processing for Soldier-borne thermal imagers. The objective of this solicitation is to leverage advances in artificial intelligence and other image processing algorithms to generate higher quality longwave thermal and fused thermal and near-infrared imagery suitable for use on embedded hardware systems for Soldier-borne use. The technology should reduce cognitive burden during long duration missions and improve user acceptance of systems that employ LWIR and NIR sensors. The algorithms should be capable of generating high-quality imagery under various illumination and ambient conditions and provide feedback to the system to adjust camera settings. The proposed processing schema should be capable of running on low size, weight, power, and cost (SWAP-C) embedded hardware. The project will be conducted in three phases: Phase I involves generating a detailed description of the proposed solution, Phase II focuses on completing the image processing pipeline, and Phase III involves instantiating the image pipeline on relevant low SWAP-C embedded hardware. The project duration is from the release date (October 3, 2023) to the close date (March 31, 2025). For more information, visit the [solicitation link](https://www.sbir.gov/node/2651327).
DOD SBIR 24.4 Annual - Solid-State Scalable/Tileable Imaging Detector for High-Energy Neutron Radiography
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a solid-state scalable/tileable imaging detector for high-energy neutron radiography. The objective is to deliver a state-of-the-art high-energy neutron radiography imaging/detector. The technology will be used in conjunction with a source of high-energy neutrons to achieve a state-of-the-art neutron radiography system. The project will consist of three phases. In Phase I, the proposer must prove the principle through a white paper study that demonstrates strong evidence that a solid-state neutron detector can be designed and constructed on a chip. In Phase II, the proposer will build and deliver a tiled detector with minimum dimensions of 11" square that is effective for 1 MeV neutrons. The detector should provide short acquisition imaging times, high contrast, high spatial resolution, and high signal-to-noise ratio. In Phase III, the proposer will explore dual-use applications of the technology. Potential applications include accurate and fast inspections of Army ammunition, armaments, and other products for quality, safety, and lethality. The technology could also be used for compact, lightweight, self-contained scalable detectors in the detection of materials that emit gamma/beta rays or sub-atomic particles, such as radioactive isotopes, contamination, and special nuclear material. Commercial applications could include ground stationary check points, aerial applications, and underground/underwater drilling/mining applications. The project duration is not specified, but the proposal submission deadline is March 31, 2025. More information can be found on the DOD SBIR website (https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).