Context-Aware RF Electromagnetic Surveying for Exploiting Signals of Opportunity
ID: AF241-0004Type: BOTH
Overview

Topic

Context-Aware RF Electromagnetic Surveying for Exploiting Signals of Opportunity

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for their SBIR 24.1 BAA solicitation. The specific topic of the solicitation is "Context-Aware RF Electromagnetic Surveying for Exploiting Signals of Opportunity" and is under the branch of the Air Force (topic number AF241-0004).

The objective of this solicitation is to develop a capability to use 3D environment models and RF propagation patterns to develop low-latency Convolutional Neural Networks (CNNs) for RF geolocation and signal-type identification. The technology aims to be run in parallel on low SWaP (Size, Weight, and Power) RF Electronic Spectrum Monitoring (ESM) antenna arrays for Class I and Class II UAS (Unmanned Aerial Systems).

The project will focus on developing algorithms that autonomously or semi-autonomously construct detailed 3D RF propagation models using available 3D geometry-and-texture models of real-world locations. These RF models will be used to estimate candidate 3D RF source locations and signal types from a low SWaP Ultra-Wide Band antenna array. The frequency ranges of interest for geolocation include 0.8 GHz - 6 GHz, and solutions extending this range without sacrificing SWaP or performance are welcome.

The geolocation capabilities developed in this project will be part of a larger Electronic Surveillance Monitoring (ESM) algorithm suite, which can provide search, intercept, collect, classify, geolocate, monitor, copy, and exploit capabilities.

The project will be conducted in three phases. In Phase I, a feasibility study, survey of relevant technologies, and prototype algorithms will be conducted and reported. Phase II will involve implementing a selected algorithm and approach and delivering a prototype payload that can be integrated with a UAS. The performance of the prototype will be evaluated for different geolocation contexts. Phase III will focus on transitioning the prototype technology to a fully-developed commercial or warfighter solution.

The solicitation is currently closed, and more information can be found on the DOD SBIR 24.1 BAA topic page on the SBIR website (https://www.sbir.gov/node/2479841).

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Software Defined RadioHead (SDRH)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Software Defined RadioHead (SDRH)" as part of their SBIR 24.4 Annual solicitation. The objective is to develop a radio agnostic SDRH system that can rapidly adapt the radio carrier frequency among diverse targeted frequency bands using analog and/or digital frequency conversion. This technology will provide additional flexibility to the commander's communication plan. The SDRH design will be a flexible antenna prototype capable of supporting multiple frequencies and radio modules, complementing the C5ISR/CMOSS standard's objective for agnostic hardware. The solicitation is open for Direct to Phase II (DP2) proposals with a maximum cost of $2,000,000 for a 12-month period of performance. Phase II will involve developing a prototype SDRH for evaluation and testing by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center. The solicitation also highlights potential dual-use applications of SDRH technology in industries such as IoT, UAVs, smart cities, and mobile communications. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2638119) or the [DOD SBIR/STTR Opportunities](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/) website.
DOD SBIR 24.4 Annual - Novel Positioning, Navigation, and Timing (PNT) Signal Classification Techniques
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a novel positioning, navigation, and timing (PNT) signal classification techniques. The purpose of this solicitation is to develop the capability to classify signals in real-time that impact navigation systems. The goal is to better understand the type of signals experienced in relevant environments to apply appropriate mitigation techniques. The current navigation systems depend on radio frequency (RF) signals that can be influenced by various interference sources. The challenge is to quickly understand the signal characteristics to react and mitigate negative impacts. The proposed solution aims to build upon AI/Machine Learning (ML) algorithm technologies to perform PNT signal classification in real-time. The project will involve developing two antenna systems capable of detecting and classifying interference signals, collecting relevant signals for training the AI/ML solution, and demonstrating the ability to detect and identify signal types in a relevant environment. The project will have a Phase I and Phase II, with Phase II focusing on the development and demonstration of the antenna systems. The anticipated duration of the project is until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Novel Positioning, Navigation, and Timing (PNT) Signal Classification Techniques
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a novel positioning, navigation, and timing (PNT) signal classification techniques. The purpose of this solicitation is to develop the capability to classify signals in real-time that impact navigation systems. The goal is to better understand the type(s) of signal(s) experienced in relevant environments to apply mitigation techniques before harm can be done. The research will focus on improving performance, cost savings, and expanding the application of the technology sensor solution set to include additional Army aviation assets. The project will involve developing adaptive learning techniques using AI/Machine Learning (ML) algorithms to perform PNT signal classification. The proposed solution aims to build upon the progress made in AI/ML signal classification and move towards real-time signal classification. The project will have a Phase I and Phase II, with Phase II requiring the development of two antenna systems capable of detecting and classifying interference signals in real-time. The project also aims to make the antenna design portable to support upgrading antenna systems and providing support to other antenna systems in the same environment. The anticipated duration of the project is until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Low Cost Persistent Multi Sensor Surveillance
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Low Cost Persistent Multi Sensor Surveillance" as part of their SBIR program. The objective of this topic is to develop environmentally hardened sensor nodes that can persistently monitor Radio Frequency (RF), weather conditions, and/or personnel access of remote islands leased on the Kwajalein Atoll for the U.S. Army's Reagan Test Site (RTS). The solutions should be independent of external power sources or communications networks, as there are no cellular or Wi-Fi communications, nor power source, in these areas. The solutions must also be capable of operating in harsh environmental conditions, including heat, humidity, regular rainfall, salt spray, and high atmospheric salinity. The data collected by these sensor nodes will be used for situational awareness, safety, security, and mission planning and support. The solicitation is open for both full or partial solutions, and Phase I proposals with a cost of up to $250,000 for a 6-month period of performance are being accepted. Phase I will involve researching and developing the system/network architecture, designing the hardware components, and proposing power source designs and networking techniques. By the end of Phase I, the awardee should have detailed descriptions of the proposed technologies. In Phase II, the awardee will produce a single prototype that demonstrates the capabilities and methodologies at a minimum of TRL4. They will also develop a user interface and display for situational awareness of sensor control and monitoring. The potential applications of this technology include wireless remote sensing for public safety, health, fitness, and wildlife dual-usages. Some examples of dual uses of remote sensing include anti-poaching efforts, remote environmental sensors enabled by low-Earth orbit satellites, wildfire early recognition sensor systems, agriculture and crop performance monitoring, and urban pollution source detection. For more information and to submit proposals, interested parties can visit the DOD SBIR program website. The solicitation is currently open, and the application due date is March 31, 2025. References: - https://www.sciencedirect.com/science/article/abs/pii/S0927775722021823 - https://www.sciencedirect.com/science/article/pii/S1877050914009831 - http://www.ijpe-online.com/EN/10.23940/ijpe.09.5.p419.mag Keywords: sensors, nodes, Radio Frequency (RF), Reagan Test Site (RTS)