Deployable Modular Integrated Sensor System (DMISS)
ID: MDA242-D007Type: BOTH
Overview

Topic

Deployable Modular Integrated Sensor System (DMISS)

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic "Deployable Modular Integrated Sensor System (DMISS)" under the SBIR program. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR) and the Export Administration Regulation (EAR). The objective is to develop an innovative sensor system that deploys from existing missile test target mechanical deployment interfaces for test scene data collection. The proposed DMISS should incorporate a variety of sensor types and support multiple sensor configurations. The system should exhibit a minimal Radar Cross Section (RCS) and IR signature and survive to collect and transmit data during re-entry. The Direct to Phase II effort would involve the design and construction of a working prototype of the DMISS concept. The Phase I feasibility documentation must substantiate the scientific and technical merit and Phase I feasibility. In Phase II, a flight-ready prototype of the DMISS would be designed, constructed, tested, and built. In Phase III, the finalized DMISS prototype would be integrated into future government mission planning.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Miniaturization of Hyperspectral Sensors for UAS Applications
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Miniaturization of Hyperspectral Sensors for UAS Applications" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop a compact, passive, day/night capable hyperspectral sensor that meets Size, Weight, and Power (SWaP) requirements for integration into ongoing modernization programs. The sensor should result in cost savings and reductions in weight, power, and volume without sacrificing capability. The sensor payload will be developed for use on smaller Unmanned Aerial Systems (UASs). Historically, airborne hyperspectral imaging (HSI) systems have been limited to larger aircraft due to heavy and complex optical components, high power consumption, and large ancillary hardware. This limits accessibility and availability. The solicitation is accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for a 24-month period of performance. Proposers interested in submitting a DP2 proposal must provide documentation to substantiate the scientific and technical merit and feasibility equivalent to a Phase I project. During Phase II, firms should complete the sensor design, fabricate and test the component, integrate it into a gimbal for final integration onto a Class II or smaller UAS platform, refine the design as necessary, and validate sensor payload performance in a government-run laboratory. They should also define relevant interfaces for integration and lay out a high-level plan for how the component could be integrated into a UAS platform. In Phase III, the sensor/gimbal payload should be integrated into a prototype system for field collection. The sensor should be deployed on at least one test event to observe performance and generate quantitative/qualitative sensor performance data. The topic references relevant research papers on hyperspectral imaging systems. The keywords for this topic are Hyperspectral, VNIR, SWIR, and LWIR. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation page on grants.gov: [link](https://www.sbir.gov/node/2638123).
DOD SBIR 24.4 Annual - Advanced Miniature Mission Processor for Hyperspectral Applications
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Advanced Miniature Mission Processor for Hyperspectral Applications" as part of their SBIR 24.4 Annual solicitation. The research focuses on developing a low-size, weight, and power (SWaP) high-performance computer for an Unmanned Aircraft Systems (UAS)-integrated hyperspectral imaging (HSI) camera. The objective is to meet the necessary SWaP requirements for integration into ongoing modernization programs. The mission processor will aggregate multiple core payload operation functions and should be compliant with current Sensor Open System Architecture (SOSA) Small Form Factor (SFF) standards. The project duration is 24 months, and the funding for Phase II proposals is up to $2,000,000. The ultimate goal is to integrate the mission processor with a sensor/gimbal into a prototype system for field collection and observe its performance. Relevant references include research papers on hyperspectral imaging and signal processing approaches. Keywords for this topic include hyperspectral, real-time processor, near-real-time processor, and mission processor. For more information and to submit a proposal, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website [here](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Autonomous Optical Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2496863).