Wireless Integrated Network—High-Capacity Low-Probability-of-Detection (WIN-HL)
ID: N242-076Type: BOTH
Overview

Topic

Wireless Integrated Network—High-Capacity Low-Probability-of-Detection (WIN-HL)

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic "Wireless Integrated Network—High-Capacity Low-Probability-of-Detection (WIN-HL)" as part of its SBIR 24.2 Annual solicitation. The Navy branch is specifically interested in this topic. The objective is to develop waveforms that address gaps in current tactical waveform technology. These waveforms should have high-capacity throughput and low-probability-of-detection features to counter evolving threats. The waveforms should be power efficient and portable across multiple hardware instantiations for both beyond line of sight and omni-directional line of sight communications. The waveforms will be designed to run on the Field Programmable Gate Array (FPGA) environment and should have an open architecture digital interface. The project will have a Phase I and Phase II, with Phase II potentially becoming classified. The selected contractor must be U.S. owned and operated with no foreign influence. The Phase I will involve designing and developing a framework for FPGA hosted waveforms, while Phase II will focus on building, testing, and validating a prototype waveform. Phase III will involve government verification and validation, as well as transitioning the capability to appropriate laboratories and platforms. The project is looking for dual-use applications and emphasizes the use of Software Defined Radios (SDR) and Open Systems Architecture (OSA) designs. The solicitation is open until June 12, 2024. For more information, visit the SBIR topic link or the solicitation agency website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Non-RF Transceiver Alternative Communicator (NRF-TAC)  
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the Non-RF Transceiver Alternative Communicator (NRF-TAC) through its SBIR program. The U.S. Army is interested in developing a small, energy-efficient, self-contained transceiver that can wirelessly communicate between two points without using traditional radio frequency (RF) transport. The NRF-TAC device should be capable of transmitting and receiving signaling up to 300 meters using non-standard means such as magnetic, acoustic, or infrared, which are difficult to detect and report in covert activities. The device should be easily concealable, field programmable, and able to operate for at least 800 hours without intervention. The Phase I of the project will involve the creation and delivery of a plausible design, while Phase II will focus on developing and testing a prototype. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the [SBIR topic link](https://www.sbir.gov/node/2496865) or the [solicitation agency website](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2496863).
DOD SBIR 24.4 Annual - NAVWAR Open Topic for Advanced Data Integrity and Control Methods
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the NAVWAR Open Topic for Advanced Data Integrity and Control Methods. The objective of this solicitation is to develop a method to assure integrity, control access, and distribution for information on any device or network. The DOD requires the ability to securely move information from anywhere to anywhere, and once delivered, ensure its integrity, control access, and limit further distribution. The current approach to achieving this relies on networks and applications, but the DOD is exploring methods to control data independent of an application or platform. Proposed solutions must protect data independent of networks, applications, or database technologies, function in disrupted, disconnected, intermittent, and low-bandwidth situations, and recover gracefully once connectivity is restored. The Phase I awards for this topic will have a period of performance of four months and a cost not to exceed $75,000, while Phase II will involve a small-scale deployment of the proposed concept. Phase III will focus on integrating the capability demonstrated in Phase II with current Naval networks. The technology developed through this solicitation has potential applications beyond the defense domain and can benefit anyone working with sensitive information.