Novel high resolution distributed radar processing for littoral and open ocean environments
ID: AF233-D003Type: BOTH
Overview

Topic

Novel high resolution distributed radar processing for littoral and open ocean environments

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2023

Additional Information

https://www.defensesbirsttr.mil/
Timeline
  1. 1
    Release Aug 23, 2023 12:00 AM
  2. 2
    Open Sep 20, 2023 12:00 AM
  3. 3
    Next Submission Due Oct 18, 2023 12:00 AM
  4. 4
    Close Oct 18, 2023 12:00 AM
Description

The Department of Defense (DoD) is seeking proposals for a novel high-resolution distributed radar processing technology for littoral and open ocean environments. The objective is to develop signal processing techniques that enable collaborative operation of radar platforms for detecting, tracking, geolocating, and imaging surface targets. The technology should be able to work in conjunction with legacy radar systems and enable sensing on various classes of airborne platforms operating over the ocean. The emphasis will be on signal processing techniques, geolocation, and imaging. The project will have a Phase I and Phase II, with Phase II focusing on accurate geolocation and imaging of surface targets. The technology developed in this project has potential applications in coastal monitoring, search and rescue activities, wildlife monitoring, monitoring of commercial fisheries and fleets, and monitoring of oil spills and ecological disasters. The project is restricted under the International Traffic in Arms Regulation (ITAR) and the Export Administration Regulation (EAR). The solicitation is closed, and more information can be found on the DoD SBIR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2496863).
DOD SBIR 24.4 Annual - Algorithms for Modular Remote Expendable Sensor Array
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Algorithms for Modular Remote Expendable Sensor Array" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop and mature decision logic and signal processing approaches for modular, configurable, remotely deployable sensing capabilities for surveillance, targeting, or chemical hazard sensing. The technology will enable maneuver elements to have situational understanding of adversary actions and threat conditions in their areas of operation. The research will focus on the development of decision logic at the sensor node and sensor array fusion node to reduce raw data into actionable decision supportive information. The project will be conducted in three phases: Phase I involves developing a conceptual analytical approach, Phase II focuses on developing and demonstrating a prototype set of multi-modal algorithms, and Phase III involves refining and ruggedizing the system and integrating it into a representative Army network. The starting Technology Readiness Level (TRL) on completion of the SBIR Phase III execution period should be TRL6 or greater. The project duration is 24 months, and funding specifics can be found on the grants.gov website. For more information and to submit a proposal, visit the DOD SBIR 24.4 Annual solicitation page on the Defense SBIR/STTR website.
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Low Cost Persistent Multi Sensor Surveillance
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Low Cost Persistent Multi Sensor Surveillance" as part of their SBIR program. The objective of this topic is to develop environmentally hardened sensor nodes that can persistently monitor Radio Frequency (RF), weather conditions, and/or personnel access of remote islands leased on the Kwajalein Atoll for the U.S. Army's Reagan Test Site (RTS). The solutions should be independent of external power sources or communications networks, as there are no cellular or Wi-Fi communications, nor power source, in these areas. The solutions must also be capable of operating in harsh environmental conditions, including heat, humidity, regular rainfall, salt spray, and high atmospheric salinity. The data collected by these sensor nodes will be used for situational awareness, safety, security, and mission planning and support. The solicitation is open for both full or partial solutions, and Phase I proposals with a cost of up to $250,000 for a 6-month period of performance are being accepted. Phase I will involve researching and developing the system/network architecture, designing the hardware components, and proposing power source designs and networking techniques. By the end of Phase I, the awardee should have detailed descriptions of the proposed technologies. In Phase II, the awardee will produce a single prototype that demonstrates the capabilities and methodologies at a minimum of TRL4. They will also develop a user interface and display for situational awareness of sensor control and monitoring. The potential applications of this technology include wireless remote sensing for public safety, health, fitness, and wildlife dual-usages. Some examples of dual uses of remote sensing include anti-poaching efforts, remote environmental sensors enabled by low-Earth orbit satellites, wildfire early recognition sensor systems, agriculture and crop performance monitoring, and urban pollution source detection. For more information and to submit proposals, interested parties can visit the DOD SBIR program website. The solicitation is currently open, and the application due date is March 31, 2025. References: - https://www.sciencedirect.com/science/article/abs/pii/S0927775722021823 - https://www.sciencedirect.com/science/article/pii/S1877050914009831 - http://www.ijpe-online.com/EN/10.23940/ijpe.09.5.p419.mag Keywords: sensors, nodes, Radio Frequency (RF), Reagan Test Site (RTS)