DOD SBIR 24.1 BAA

Active
No
Status
Closed
Release Date
November 29th, 2023
Open Date
January 3rd, 2024
Due Date(s)
February 21st, 2024
Close Date
February 21st, 2024
Topic No.
N241-D01

Topic

DIRECT TO PHASE II: Ultrahigh-Dynamic Range Photonic-Assisted Direct Digitization Receiver

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024

Summary

The Department of Defense (DOD) is seeking proposals for their SBIR 24.1 BAA. The specific topic of the solicitation is "DIRECT TO PHASE II: Ultrahigh-Dynamic Range Photonic-Assisted Direct Digitization Receiver". The objective is to develop a photonic-enabled receiver that can directly digitize radio frequencies up to 4 GHz without desensitizing or compressing in the presence of strong interference. The technology aims to overcome limitations of direct digitization receivers, such as interference and power consumption. The Phase I feasibility documentation must demonstrate the scientific and technical merit of the proposed technology. In Phase II, a functioning prototype exceeding the threshold performance objectives should be created and tested. The technology has potential applications in commercial radar and 5G/6G receivers. The work in Phase II may become classified. The selected contractor must be U.S. owned and operated with no foreign influence. The proposal submission deadline is February 21, 2024. For more information, visit the SBIR topic link or the solicitation agency website.

Description

OUSD (R&E) CRITICAL TECHNOLOGY AREA(S): Integrated Network Systems-of-Systems; Microelectronics; Sustainment

 

The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), 22 CFR Parts 120-130, which controls the export and import of defense-related material and services, including export of sensitive technical data, or the Export Administration Regulation (EAR), 15 CFR Parts 730-774, which controls dual use items. Offerors must disclose any proposed use of foreign nationals (FNs), their country(ies) of origin, the type of visa or work permit possessed, and the statement of work (SOW) tasks intended for accomplishment by the FN(s) in accordance with the Announcement. Offerors are advised foreign nationals proposed to perform on this topic may be restricted due to the technical data under US Export Control Laws.

 

OBJECTIVE: Develop a photonic-enabled receiver that can directly digitize radio frequencies up to 4 GHz without desensitizing or compressing in the presence of strong interference.

 

DESCRIPTION: The benefits of direct digitization receivers are well known and include (1) software-defined signal processing over the entire operating frequency range, and (2) lower size, weight, and cost in comparison with superheterodyne receiver chains. Despite these advantages, two key limitations prohibit their use in certain demanding applications: (a) strong interference either desensitizes or compresses the entire spectrum, and (b) radio frequency (RF) sampling analog-to-digital converters (ADCs) consume large amounts of electrical power, which can be difficult to manage in certain harsh environments where antennas are deployed.

 

Microwave photonic signal processors and analog fiber-optic links are well suited to overcome these fundamental limitations.(3,4) In particular, wideband analog photonic phase modulation enables designers to encode analog signals in the optical domain without any small signal approximations, enabling the use of sensitive coherent receiver photonics to sample in-phase and quadrature components and decode phase information in the digital domain directly [Ref 1]. The benefits of analog signal transport over fiber are also well known, enabling coherent sampling multichannel receivers and power-hungry ADCs to be integrated in more amenable locations with access to power, cooling, and maintenance.

 

Work produced in Phase II may become classified. Note: The prospective contractor(s) must be U.S. owned and operated with no foreign influence as defined by 32 U.S.C. § 2004.20 et seq., National Industrial Security Program Executive Agent and Operating Manual, unless acceptable mitigating procedures can and have been implemented and approved by the Defense Counterintelligence and Security Agency (DCSA) formerly Defense Security Service (DSS). The selected contractor must be able to acquire and maintain a secret level facility and Personnel Security Clearances. This will allow contractor personnel to perform on advanced phases of this project as set forth by DCSA and NAVAIR in order to gain access to classified information pertaining to the national defense of the United States and its allies; this will be an inherent requirement. The selected company will be required to safeguard classified material during the advanced phases of this contract IAW the National Industrial Security Program Operating Manual (NISPOM), which can be found at Title 32, Part 2004.20 of the Code of Federal Regulations. Reference: National Industrial Security Program Executive Agent and Operating Manual (NISP), 32 U.S.C. § 2004.20 et seq. (1993). https://www.ecfr.gov/current/title-32/subtitle-B/chapter-XX/part-2004

 

PHASE I: For a Direct to Phase II topic, the Government expects that the small business would have accomplished the following in a Phase I-type effort. It must have developed a concept for a workable prototype or design to address at a minimum the basic requirements of the stated objective. The below actions would be required in order to successfully satisfy the requirements of Phase I:

Demonstrate the feasibility of a design of a photonic-assisted direct digitization receiver with a 3MHz–4 GHz target, 3MHz-2GHz threshold instantaneous bandwidth (IBW), an effective noise figure (NF) of < 8 dB target, < 13 dB threshold, and an input-referred full-scale power greater than 26 dBm target and 15dBm threshold from 3MHz-2GHz, and 15 dBm target -10 dBm threshold from 2 GHz–4 GHz. The direct digitization receiver should not desensitize or compress with spurious above ADC spurs over the entire input power range. With a noise figure (NF) less than 8 dB and an assumed SNR > 6 dB, the receiver should also be able to receive signals (1 MHz analysis bandwidth) down to < -100 dBm target, < -88 dBm threshold, even in the presence of in-band interference up to the aforementioned levels. The demonstration shall include prototype plans to be developed under Phase II.

 

FEASIBILITY DOCUMENTATION: Offerors interested in participating in Direct to Phase II must include in their response to this topic Phase I feasibility documentation that substantiates the scientific and technical merit and Phase I feasibility described in Phase I above has been met (i.e., the small business must have performed Phase I-type research and development related to the topic NOT solely based on work performed under prior or ongoing federally funded SBIR/STTR work) and describe the potential commercialization applications. The documentation provided must validate that the proposer has completed development of technology as stated in Phase I above. Documentation should include all relevant information including, but not limited to: technical reports, test data, prototype designs/models, and performance goals/results. Work submitted within the feasibility documentation must have been substantially performed by the offeror and/or the principal investigator (PI). Read and follow all of the DON SBIR 24.1 Direct to Phase II Broad Agency Announcement (BAA) Instructions. Phase I proposals will NOT be accepted for this topic.

 

PHASE II: Create and test a functioning prototype exceeding the threshold performance objectives. Demonstrate a packaged design and real-time digital signal processing.

 

Work in Phase II may become classified. Please see note in Description paragraph.

 

PHASE III DUAL USE APPLICATIONS: Support the DoD in transitioning the proposed receiver to include working with a Program Office to develop a final packaging design that meets platform’s Size, Weight, and Power (SWaP) and environmental requirements, and developing systems specifications for the associated analog photonic links. Development of this receiver has widespread commercial applications for commercial radar and 5G/6G receivers.

 

REFERENCES:

Clark, T. R., O&#39;Connor, S. R., & Dennis, M. L. (2010). A phase-modulation I/Q-demodulation microwave-to-digital photonic link. IEEE Transactions on Microwave Theory and Techniques, 58(11), 3039-3058. https://doi.org/10.1109/TMTT.2010.2076971
Urick, V. J., Jr., Williams, K. J., & McKinney, J. D. (2015, February 6). Fundamentals of microwave photonics. John Wiley & Sons. https://doi.org/10.1002/9781119029816
Devgan, P. S. (2018). Applications of Modern RF Photonics. Artech House. https://www.worldcat.org/title/applications-of-modern-rf-photonics/oclc/1029482016
Yegnanarayanan, S., Kharas, D., Plant, J. J., Ricci, M., Ghosh, S., Sorace-Agaskar, C., & Juodawlkis, P. W. (2021, August). Integrated Microwave Photonic Subsystems. In 2021 IEEE Research and Applications of Photonics in Defense Conference (RAPID) (pp. 1-2). IEEE. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9521455

 

KEYWORDS: Digitization; Electronic Warfare; EW; Receiver; Photonic; Radio Frequency; RF; Fiber

Similar Opportunities

DOD SBIR 24.4 Annual
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.