Resonator Laser Gyro
ID: SF241-0019Type: BOTH
Overview

Topic

Resonator Laser Gyro

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for the topic of "Resonator Laser Gyro" in their SBIR 24.1 BAA solicitation. The U.S. Space Force (USSF) requires high accuracy navigation attitude systems for use in smaller space vehicles. Current gyroscopes do not meet the required performance for precision operation in these vehicles. The goal is to develop a gyroscope with MEMS size, weight, and power, but with high navigation-grade performance. This technology would enable precision pointing of small space vehicles and have applications in offensive and defensive counterspace efforts, as well as laser communication terminals and hosted sensor payloads. The project aims to develop a nano scale ring laser gyro (RLG) that operates at an exceptional point, leveraging recent developments in exploiting gain/loss properties in nano scale waveguides. The project will have a duration of multiple phases, with Phase I focusing on designing a chip level PT-symmetry RLG and assessing its practical aspects. Phase II will produce a sensor that satisfies the complete performance requirements, and Phase III will involve testing the prototype gyro and electronics in a dynamic environment. The performance goals include a target angular random walk (ARW) of 0.005 deg/rt-hr, bias stability of 0.05 deg/hr at 30 minutes, and a gyro dynamic range of up to 10 deg/s. The project will require radiation-hardened technology and aims for a power consumption of 1 W per active channel. The solicitation is closed, and more information can be found at the DOD SBIR 24.1 BAA website.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD SBIR 24.4 Annual - Miniaturization of Hyperspectral Sensors for UAS Applications
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Miniaturization of Hyperspectral Sensors for UAS Applications" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop a compact, passive, day/night capable hyperspectral sensor that meets Size, Weight, and Power (SWaP) requirements for integration into ongoing modernization programs. The sensor should result in cost savings and reductions in weight, power, and volume without sacrificing capability. The sensor payload will be developed for use on smaller Unmanned Aerial Systems (UASs). Historically, airborne hyperspectral imaging (HSI) systems have been limited to larger aircraft due to heavy and complex optical components, high power consumption, and large ancillary hardware. This limits accessibility and availability. The solicitation is accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for a 24-month period of performance. Proposers interested in submitting a DP2 proposal must provide documentation to substantiate the scientific and technical merit and feasibility equivalent to a Phase I project. During Phase II, firms should complete the sensor design, fabricate and test the component, integrate it into a gimbal for final integration onto a Class II or smaller UAS platform, refine the design as necessary, and validate sensor payload performance in a government-run laboratory. They should also define relevant interfaces for integration and lay out a high-level plan for how the component could be integrated into a UAS platform. In Phase III, the sensor/gimbal payload should be integrated into a prototype system for field collection. The sensor should be deployed on at least one test event to observe performance and generate quantitative/qualitative sensor performance data. The topic references relevant research papers on hyperspectral imaging systems. The keywords for this topic are Hyperspectral, VNIR, SWIR, and LWIR. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation page on grants.gov: link.
    DOD SBIR 24.4 Annual - Precision Control Lens Eye Tracking Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of precision contact lens eye tracking sensors for Extended Reality (XR) interaction, training optimization, and cognitive monitoring. The objective is to enhance command and control capabilities in XR environments, optimize training, and enable real-time adaptive systems. Current eye tracking technologies lack the necessary precision and ruggedness for military operations. The use of contact lens-based eye tracking would allow for operational integration into various dynamic scenarios, including manned and unmanned air operations and ground vehicle systems. The proposed project includes feasibility studies, the development of a working prototype, and human factors feasibility studies. The technology has potential applications in academic research, health monitoring, and various market applications. The project is open for proposals until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Thermal Reflex Sight
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a Thermal Reflex Sight (TRS) for use by Special Operations Forces in short to medium range target engagement scenarios. The TRS should be a weapon mounted capability that combines a long wave infrared thermal weapons sight with a reflex day optic sight, allowing for targeted engagements in varied lighting conditions. The TRS should be optimized for short to medium range engagements and should not be a "shoot from the hip" sight. The objective of Phase I is to conduct a feasibility study to assess the possible options that satisfy the requirements. Phase II involves the development, installation, and demonstration of a prototype system. The resulting system could have applications in various military and law enforcement settings. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Precision Control Lens Eye Tracking Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of precision contact lens eye tracking sensors for Extended Reality (XR) interaction, training optimization, and cognitive monitoring. The objective is to enhance command and control capabilities in XR environments and enable real-time adaptive systems. Current eye tracking technologies lack the necessary precision and ruggedness for military operations. The proposed contact lens-based eye tracking sensors would allow for operational integration into various dynamic scenarios, including manned and unmanned air operations and ground vehicle systems. The project will involve feasibility studies, the development of a working prototype, and human factors feasibility studies. The technology has potential applications in academic research, health monitoring, and various market applications. The deadline for proposals is March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Thermal Reflex Sight
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a Thermal Reflex Sight (TRS) for use by Special Operations Forces in short to medium range target engagement scenarios. The TRS should be a weapon mounted capability that combines a long wave infrared thermal weapons sight with a reflex day optic sight, allowing for targeted engagements in varied lighting conditions. The TRS should be optimized for short to medium range engagements and should not be a "shoot from the hip" sight. The objective of Phase I is to conduct a feasibility study to assess the possible options that satisfy the requirements, while Phase II involves developing and demonstrating a prototype system. The resulting system could have applications in various military and law enforcement settings. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD STTR 24.D Annual - Window-glass Telescope for Highly-compensated Ubiquitous Sensing (WITH US)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Small Business Innovation Research (SBIR) Phase I program. The specific topic of the solicitation is the "Window-glass Telescope for Highly-compensated Ubiquitous Sensing (WITH US)". The objective of this program is to design, develop, and study a large collecting area telescope system that can detect faint objects in space using window(s) already installed on commercial office buildings. The goal is to utilize the massive quantity of in-situ commercial building windows as a tool for sensing faint objects or as a relay optic for sending light to a remote object. The solicitation seeks proposals to design a machine-learning or other system to characterize the surface shape of window glass, design a computational imaging system for hardware or numerical corrections, and design the physical realization of the telescope system. The project duration for Phase I is 12 months, and successful proposals should include modeling and simulation to achieve the goals. Phase II will further develop modeling methods and validate capabilities through hardware design, construction, and testing of prototype subsystems. The Phase II base effort should include a scalability study and a small-scale laboratory demonstration. The Phase II option effort should include a task dedicated to determining the feasibility of integrating components into a fieldable system capable of performing astronomical measurements. The ultimate goal is to commercialize the concept and apply it to various imaging applications, including ground-based Space Domain Awareness (SDA) and satellite surveillance.