Mitigating Negative Effects of Polysulfide Dissolution in 18650 Lithium Sulfur Battery
ID: SF241-0018Type: BOTH
Overview

Topic

Mitigating Negative Effects of Polysulfide Dissolution in 18650 Lithium Sulfur Battery

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic "Mitigating Negative Effects of Polysulfide Dissolution in 18650 Lithium Sulfur Battery" as part of their SBIR 24.1 BAA program. The objective of this topic is to improve the cycle life and capacity retention of Lithium-Sulfur battery chemistry by addressing and resolving the negative effects of parasitic polysulfide reactions. The current state-of-practice specific energy in 18650 Li-ion cells used in space missions is low, and Lithium-Sulfur chemistry has been identified as a promising solution to achieve higher energy rechargeable power sources. However, practical issues with Lithium-Sulfur chemistry, such as polysulfide shuttling, result in low Sulfur utilization and capacity fade. This topic aims to investigate methods to mitigate the inhibiting effects of polysulfide dissolution and improve its volumetric energy density. The research will involve the feasibility study of practical solutions, synthesis and characterization of proof-of-concept materials, optimization of materials, and testing the impact on the cyclability of resultant Lithium-Sulfur cells. The ultimate goal is to develop 18650 cells with a specific energy of 450 W-h/kg and 500 cycles of at least 80% capacity retention at 20% DOD. Successful development in Phases I and II provides opportunities for transition to the USSF's supply chain into programs of record. The solicitation is closed, and more information can be found on the DOD SBIR 24.1 BAA program page.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Multisystem Mobile Corrosion Unit
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a research topic titled "Multisystem Mobile Corrosion Unit" as part of their SBIR program. The objective of this topic is to develop a deployable solution for the Army's major corrosion issue, allowing for repairs in austere environments while in the field. The solution should include capabilities such as laser ablation, corrosion preventative coating application, cold spray, plasma blast, welding, and more. The project will consist of two phases, with Phase I accepting proposals for up to $250,000 for a 6-month period to develop a proof-of-concept prototype. Phase II will involve developing a deployment-ready multisystem corrosion unit. The technology has potential applications in industries such as automotive, aircraft, construction, agriculture, and power and energy. The project duration is not specified, and interested parties can find more information and submit proposals on the DOD SBIR website.
DOD SBIR 24.4 Annual - Tactical Micro-grid Standard Add-on for Power Sources
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Tactical Micro-grid Standard Add-on for Power Sources" as part of their SBIR 24.4 Annual solicitation. The goal of this research is to address the need for reliable and flexible power solutions in dynamic and unpredictable environments, including directed energy. The objective is to enable the seamless integration of diverse power sources, such as renewable energy, generators, and storage systems, into a cohesive network. This would create resilient, self-sustaining power infrastructure capable of providing uninterrupted energy supply, enhancing operational efficiency, and reducing reliance on vulnerable external grids. The solicitation is open for Phase I proposals with a budget of up to $250,000 for a 6-month period of performance. Phase I involves analyzing the current state of power infrastructure, conceptualizing the design, and developing a feasibility study. Phase II will focus on building a fully functional prototype. The potential applications of this technology include urban and critical infrastructure, remote/rural communities, electric vehicles, autonomous vehicles, and data centers. The implementation of the Tactical Micro-grid Standard has the potential to establish a modular, efficient, and more effective smart power microgrid.
DOD SBIR 24.4 Annual - Electromagnetic Protection Coating for Artillery Projectiles
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of an Electromagnetic Protection Coating for Artillery Projectiles. The Army is looking for innovative solutions to integrate electromagnetic protection materials onto extended range artillery rounds. The proposed solutions must be able to withstand artillery gun launch loads, conform to the projectile's geometry, and perform at elevated skin temperatures caused by aerodynamic heating. The Phase I contract will involve research into ULTCC formulations or other electromagnetic materials that can operate in environments up to 650°C. Phase II will focus on fabricating material samples for mechanical properties testing and sintering them onto metal alloy substrates. Phase III will involve large-scale production and the fabrication of prototypes that can withstand shock loads up to 30,000 G's. The proposer will work with an Army prime or industry transition partner to fully develop and integrate the design onto the target platform. The technology falls under the Advanced Materials critical technology area and is restricted under export control laws. The solicitation is open until March 31, 2025. For more information, visit the [SBIR topic link](https://www.sbir.gov/node/2651307) or the [solicitation agency website](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The potential impacts of this research include enabling rapid and iterative manufacturing processes for a broad range of military applications. The advanced manufacturing and modular design will be critical to all services where rapid iteration and production are needed. The system could be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page on the Defense SBIR/STTR website.
DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of the SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The system could have broad military applications where rapid iteration and production are needed, and it may be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page.