Multisystem Mobile Corrosion Unit
ID: A244-029Type: BOTH
Overview

Topic

Multisystem Mobile Corrosion Unit

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for a research topic titled "Multisystem Mobile Corrosion Unit" as part of their SBIR program. The objective of this topic is to develop a deployable solution for the Army's major corrosion issue, allowing for repairs in austere environments while in the field. The solution should include capabilities such as laser ablation, corrosion preventative coating application, cold spray, plasma blast, welding, and more. The project will consist of two phases, with Phase I accepting proposals for up to $250,000 for a 6-month period to develop a proof-of-concept prototype. Phase II will involve developing a deployment-ready multisystem corrosion unit. The technology has potential applications in industries such as automotive, aircraft, construction, agriculture, and power and energy. The project duration is not specified, and interested parties can find more information and submit proposals on the DOD SBIR website.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Water Tester at Point of Need
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a water tester at the point of need. The objective of this research topic is to improve water surveillance by developing a rugged and compact field instrument capable of providing microbiological and metal detection capabilities. The goal is to reduce both short- and long-term health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results in less than 4 hours. The equipment must be compact, durable, and able to fit in a carry-on piece of luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use for Special Operations Forces and conventional forces, as well as environmental programs, emergency response teams, and other federal directorates. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation on grants.gov.
    DOD SBIR 24.4 Annual - Water Tester at Point of Need
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a water tester at the point of need. The objective of this solicitation is to develop applied research for an innovative capability to improve water surveillance in field conditions. The goal is to create a rugged and compact field instrument that can provide microbiological and metal detection capabilities to reduce health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results within 4 hours. The equipment must be compact, durable, and able to fit in carry-on luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, and Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use, environmental programs, emergency response teams, and other federal directorates. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link: here.
    DOD SBIR 24.4 Annual - Ruggedized Additive Mobile Manufacturing Unit (RAMMU)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a Ruggedized Additive Mobile Manufacturing Unit (RAMMU) as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to use additive manufacturing in a deployed environment to decrease downtime for foreign and non-standard weapons parts, motor pool parts, and dental accessories. The RAMMU should be able to print different types of materials, including metal, plastics, polys, and steel, while keeping the container below a 10Klbs threshold. It should be a standalone unit with the ability to connect into forward operating bases' power. The system must be easy to use with plug and play capability and should not rely on WIFI, Bluetooth, or the internet for updates or services. In Phase I, a feasibility study will be conducted to assess the options that satisfy the requirements. The study should investigate all options that meet or exceed the minimum performance parameters and recommend the best option. Phase II involves developing, installing, and demonstrating a prototype system on a deployable platform under challenging conditions. The potential impact of this technology is significant, as it can be used in various military applications to reduce the time required to make weapons operational. The system aims to achieve operational usage within 24 hours of a broken part. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual page on the Defense SBIR/STTR Opportunities website.
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the specific branch of the DOD overseeing this topic. The objective is to develop a simple-to-use sample collection and processing method that can accurately detect specific fungal and bacterial species commonly associated with complex battlefield wound infections. The technology should be capable of preparing an adequate specimen for identification and detection in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, leading to delays in treatment and medical intervention decisions. The proposed technology should provide rapid diagnostics with a sample collection-to-result time of less than 2 hours, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and commercialize the technology for both civilian and military settings. The government may propose further harmonization of the technology with other relevant products to meet additional DoD requirements. The solicitation is open until March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the branch responsible for this topic. The objective is to develop a simple-to-use sample collection and processing method capable of preparing an adequate specimen for the identification and accurate detection of specific fungal and/or bacterial species commonly associated with complex battlefield wound infections. The technology should be suitable for use in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, resulting in delays in treatment and medical intervention decisions. The proposed technology should enable rapid diagnosis (less than 2 hours) at the point of injury, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and transition the technology for commercial use in both civilian and military settings. The proposal submission deadline is March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
    DOD SBIR 24.4 Annual - Autonomous Bridging Kit Open Topic
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for an Autonomous Bridging Kit as part of its SBIR program. The objective of this project is to develop a solution that allows the Army to autonomously maneuver and connect temporary, mobile bridging platforms for wet gap (water) crossing operations. The desired solution should enable autonomous movement and navigation of fully loaded wet gap bridging platforms and their bays from origin to destination while detecting and avoiding obstacles in the water. The goal is to reduce the assembly time of the bridging platforms and the number of Soldiers required to perform wet gap crossing operations. The project will be conducted in two phases. In Phase I, a preliminary autonomous kit design will be developed. In Phase II, the design will be refined and a prototype of the autonomous kit will be created. The total funding for Phase II awards is $1,900,000 for a 12-month period of performance. The ultimate goal of Phase III is to transition the technology to a US Army lab or a Program Executive Office for further development or potential acquisition pathways. The solicitation is open until March 31, 2025. For more information, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - YTC Full Load Cooling
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "YTC Full Load Cooling" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop modernized data processing techniques to accurately assess the cooling capabilities of military vehicles with electronically controlled powertrains. The current testing methodologies and data processing techniques for fluid temperature data in critical systems of military vehicles are outdated and cannot be used for assessing vehicles with electronically controlled transmissions. The goal is to modernize the test methodology and utilize synthetic data generation techniques to accurately characterize the performance of the vehicle, even in extreme environments. The Phase I of the project will involve an initial site visit, development of a new Full Load Cooling (FLC) test methodology, characterization of powertrain derating, and submission of a final report. Phase II will focus on refining the FLC test methodology, developing a software program and Graphical User Interface (GUI) for synthetic data generation, and creating a test plan for field conditions. The potential impacts of this research include improved testing and assessment of military vehicles' cooling system performance, better understanding of powertrain derating, and the development of advanced data processing techniques. The research will leverage commercial industry data and expertise on electronically controlled powertrains and can have applications in modeling and simulation capabilities for engine and energy cooling, as well as in the manufacturing process for cooling systems and powertrains. The project duration is from 4QFY24 to 3QFY26, and interested parties can find more information and submit proposals on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Small Unmanned Ground Robotic Systems
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a cyber-hardened small unmanned ground robotic system. The system should be capable of being operated using both a vendor-developed .apk TAK GOV software controller and a Tomahawk Robotics Grip S20 universal controller. It should integrate the best C2/data link components and be operable with Silvus Technologies and Persistent Systems radios. The system should be designed for intelligence, surveillance, and reconnaissance (ISR) purposes and be able to operate in all-weather conditions within rural and urban environments. The system should have a minimum battery life of 60-90 minutes and a ground control station line-of-sight range capability of 100 meters. The integrated sensors should be able to identify moving armed personnel at specified distances. The system should also have cyber survivability attributes and be capable of carrying various payloads. The Phase I of the project involves conducting a feasibility study to assess the options that satisfy the requirements. The Phase II includes developing, installing, and demonstrating a prototype system. The system has potential applications in a broad range of military operations, enhancing operational situational awareness, reducing cognitive and physical workload, and reducing risk to the user. The project is open for proposals until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Small Unmanned Ground Robotic Systems
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a cyber-hardened small unmanned ground robotic system. The system should be capable of being operated using both a vendor-developed .apk TAK GOV software controller and a Tomahawk Robotics Grip S20 universal controller. It should integrate the best C2/data link components and be operable with Silvus Technologies and Persistent Systems radios. The system should be designed for intelligence, surveillance, and reconnaissance (ISR) purposes and be able to operate in all-weather conditions within rural and urban environments. The system should have a minimum operating time of 60 minutes for smaller systems and 90 minutes for larger systems, with a ground control station line-of-sight range capability of 100 meters. The integrated sensors should be able to identify moving armed personnel at specified distances. The system should also have cyber survivability attributes and be capable of carrying various payloads. The feasibility study for Phase I should investigate all options that meet or exceed the minimum performance parameters. Phase II involves developing and demonstrating a prototype system, and Phase III focuses on dual-use applications in military settings. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.