Device-Scale AFM-Thermoreflectance Hybrid Metrology
ID: 4Type: BOTH
Overview

Topic

Device-Scale AFM-Thermoreflectance Hybrid Metrology

Agency

Department of CommerceNational Institute of Standards and Technology

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Apr 16, 2024 12:00 AM
  2. 2
    Open Apr 16, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 14, 2024 12:00 AM
  4. 4
    Close Jun 14, 2024 12:00 AM
Description

The Department of Commerce, specifically the National Institute of Standards and Technology, is seeking proposals for the FY2024 Small Business Innovation Research (SBIR) Program for CHIPS for America – CHIPS Metrology. The specific topic of the solicitation is "Device-Scale AFM-Thermoreflectance Hybrid Metrology".

This solicitation is focused on research and technology related to device-scale atomic force microscopy (AFM) and thermoreflectance hybrid metrology. The goal is to develop innovative solutions for measuring and characterizing the thermal properties of advanced electronic devices at the nanoscale level.

The potential impacts of this technology include improved understanding of heat transfer in electronic devices, leading to more efficient and reliable designs. This research can also contribute to the development of new materials and manufacturing processes for electronic devices.

The project duration for this solicitation is not specified, but the application due date is June 14, 2024. Funding specifics are not provided in the document.

For more information and to access the solicitation, visit the SBIR topic link: Device-Scale AFM-Thermoreflectance Hybrid Metrology. The full solicitation notice can be found on the grants.gov website: Solicitation Agency URL.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
DOD SBIR 24.4 Annual - Electronic quality ferroelectric III-Nitride epitaxy for device heterostructures
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Electronic quality ferroelectric III-Nitride epitaxy for device heterostructures" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop single crystalline epitaxial thin films and heterostructures of group III-IIIb-Nitride thin films for electronic device applications. The goal is to produce films that are scalable to 4-inch diameter wafer sizes or larger. The research aims to enable the development of useful products such as high operating temperature electronic memory, high temperature electronic circuits, and integrated nonlinear optical photonic circuits for UV-visible wavelengths. In Phase I, the focus is on attaining the appropriate precursors for epitaxy and producing films lattice matched to GaN and other substrates. The goal is to assess the optical and electrical quality of the thin films and demonstrate ferroelectric behavior. Phase II continues the pursuit of single crystalline epitaxial thin films and heterostructures, with a focus on developing processes relevant to 4" or larger substrates. The goal is to fabricate devices for electronic memory applications and explore switching behavior. Optical properties and nonlinear optical functionality are also considered. In Phase III, the aim is to produce epitaxial foundry services for electronic and photonic device regimes that utilize ferroelectric III-Nitride thin films. Collaboration with other research groups is encouraged to make accurate comparisons with other epitaxial approaches. The solicitation is open until March 31, 2025. For more information, visit the [SBIR topic link](https://www.sbir.gov/node/2651313) or the [solicitation agency website](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Automated Functional Grading of Materials for Directed Energy Deposition Additive Manufacturing
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of software for automated functional grading of materials in directed energy deposition additive manufacturing. This research topic aims to enable the production of complex, multi-material munitions with enhanced lethality. The software should allow for the creation of functionally graded materials (FGMs) by generating tool paths for multi-material grading in at least three directions. The software should be capable of accepting user inputted gradients for combinations of at least four metals simultaneously. In Phase I, a proof-of-concept software should be developed to print FGMs on a directed energy deposition additive manufacturing printer. The software should be able to accept user-generated gradients and demonstrate control over changing the mixing of metals. Materials characterization should be performed to verify the chemistry of the deposited gradient. In Phase II, the software should be expanded into a prototype capability, allowing for user-defined material grading using up to four metals simultaneously. Graded test coupons should be fabricated in multiple orientations, and a demonstration part containing a functionally graded material should be generated. Materials characterization should be performed for each coupon. The development of this software will greatly increase manufacturing capability and potentially help increase widespread adoption of directed energy deposition additive manufacturing technology. The military and civilian sectors, including manufacturing research, aerospace, mining, power, tool manufacturing, and medical applications, would benefit from this technology. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2651311).
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
Miniaturization and Automation of Tissue Chip Systems (MATChS) (U43/U44 Clinical Trial Not Allowed)
Active
Department of Health and Human Services
The Department of Health and Human Services, specifically the National Institutes of Health, is seeking proposals for the Miniaturization and Automation of Tissue Chip Systems (MATChS) through their SBIR program. The goal of this funding opportunity is to support the development of benchtop, portable, automated systems that maintain 3D tissue constructs and provide biologically relevant outputs of tissue health and function. The technology should be easy to use, have integrated in-line sensors, and be capable of rapid and reproducible high-throughput analysis. The system should also be capable of maintaining culture without external intervention and be remotely monitored through real-time biosensing. The fabrication procedure must be cost-effective, mass producible, and robust. The funding opportunity is open for Phase I, Phase II, Fast-Track, and Direct to Phase II grant applications. The project duration is from 2024 to 2026, with multiple application due dates. More details can be found on the grants.gov website.