Scalable High Frequency Transmit/Receive Array for Multiple Unmanned Underwater Vehicle and Torpedo Applications
ID: N24A-T012Type: Phase I
Overview

Topic

Scalable High Frequency Transmit/Receive Array for Multiple Unmanned Underwater Vehicle and Torpedo Applications

Agency

Department of DefenseN/A

Program

Type: STTRPhase: Phase IYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program, specifically for Phase I of the STTR program. The topic of the solicitation is "Scalable High Frequency Transmit/Receive Array for Multiple Unmanned Underwater Vehicle and Torpedo Applications". The Navy branch of the DOD is interested in developing a configurable, scalable, adaptable, and affordable High Frequency SONAR array technology based on efficient and affordable textured ceramic materials. This technology aims to improve performance in more compact form factors. The objective is to create a transducer concept that can be used for both legacy acoustic communications and heavyweight torpedo detection and homing applications. The Phase I project should demonstrate a robust, manufacturable, and affordable design for individual transducer elements that can be considered for both legacy UUV and heavyweight torpedo applications. Phase II involves constructing an HF array of such sensors suitable for a specific application, evaluating the cost and performance envelope made possible by the innovative application of textured ceramics. Phase III aims to deliver an affordable and fundamentally new performance capability for both commercial and Navy/Marine Corps high frequency SONAR and acoustic communications. The project duration is not specified, but the solicitation is closed. For more information, visit the SBIR topic link or the solicitation agency URL.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - NAVSEA Open Topic for Sustainment and Obsolescence
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the NAVSEA Open Topic for Sustainment and Obsolescence. The objective is to address Navy needs regarding sustainment and obsolescence. NAVSEA is looking for existing technology demonstration platforms, prototypes, and commercial products that can quickly and reliably get Navy assets back in the field. The focus areas for potential projects include material quality, AI/ML generated work instructions, additive manufacturing advancements, cold spray technology advancements, shipyard and maintenance operational logistics improvements, rapid manufacturing for urgent part obsolescence needs, and digital twins for system lifecycle sustainability and design evolution. The Phase I awards for this topic will have a period of performance of four months and a cost not to exceed $75,000. Phase I feasibility will describe the proposed technology, improvements to existing capabilities, and impacts to current logistics. Phase II will involve developing a functional prototype, a transition plan, and further commercialization. The Phase II effort will be specific to each project. The technology developed through this program will have dual-use applications and can be applied commercially. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2652283).
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2496863).
DOD SBIR 24.4 Annual - Non-RF Transceiver Alternative Communicator (NRF-TAC)  
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the Non-RF Transceiver Alternative Communicator (NRF-TAC) through its SBIR program. The U.S. Army is interested in developing a small, energy-efficient, self-contained transceiver that can wirelessly communicate between two points without using traditional radio frequency (RF) transport. The NRF-TAC device should be capable of transmitting and receiving signaling up to 300 meters using non-standard means such as magnetic, acoustic, or infrared, which are difficult to detect and report in covert activities. The device should be easily concealable, field programmable, and able to operate for at least 800 hours without intervention. The Phase I of the project will involve the creation and delivery of a plausible design, while Phase II will focus on developing and testing a prototype. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the [SBIR topic link](https://www.sbir.gov/node/2496865) or the [solicitation agency website](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Software Defined RadioHead (SDRH)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Software Defined RadioHead (SDRH)" as part of their SBIR 24.4 Annual solicitation. The objective is to develop a radio agnostic SDRH system that can rapidly adapt the radio carrier frequency among diverse targeted frequency bands using analog and/or digital frequency conversion. This technology will provide additional flexibility to the commander's communication plan. The SDRH design will be a flexible antenna prototype capable of supporting multiple frequencies and radio modules, complementing the C5ISR/CMOSS standard's objective for agnostic hardware. The solicitation is open for Direct to Phase II (DP2) proposals with a maximum cost of $2,000,000 for a 12-month period of performance. Phase II will involve developing a prototype SDRH for evaluation and testing by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center. The solicitation also highlights potential dual-use applications of SDRH technology in industries such as IoT, UAVs, smart cities, and mobile communications. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2638119) or the [DOD SBIR/STTR Opportunities](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/) website.
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.