High-Temperature, High-Efficiency Electrical Starter/Generator
ID: N241-021Type: BOTH
Overview

Topic

High-Temperature, High-Efficiency Electrical Starter/Generator

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for their SBIR 24.1 BAA solicitation. The specific topic of the solicitation is "High-Temperature, High-Efficiency Electrical Starter/Generator" and it falls under the Navy branch. The objective of this solicitation is to develop a high-temperature, high-efficiency electrical starter/generator (ES/G) and a system generator control unit (GCU) to optimize heat load, output power, size, and weight of future power systems.

    The Navy is interested in new Electrical Power Generating System (EPGS) technologies that can increase efficiency, specific power, power density, and power capacity for 270 Vdc More-Electric Aircraft (MEA) systems. The EPGS is the main power source for MEA and should provide motoring for main engine start capabilities. The Navy is open to improvements to the existing EPGS or a new novel power generation system architecture/design.

    The desired generator should be able to produce 200 kW of power across a 1.00-to-1.75 speed range, with the higher region of the speed range around 24,000 rpm. It should be capable of providing stable power for continuous and intermittent power across the operating speed range and maintain typical power quality metrics. The offeror should demonstrate feasibility and performance capability during Phase I using modeling, simulation, and analysis.

    Phase I involves defining the generator design approach and developing an implementation plan. Phase II focuses on developing and demonstrating the generator technology that can provide 200 kW of continuous power and can be fitted into the aircraft. Phase III involves packaging and integrating the new generator for use in the aircraft, subjecting it to full qualification testing and flight test profiles.

    The potential impacts of this technology include increased efficiency and power capacity of the ES/G, reduction of system volume and weight, improved thermal performance, better engine and air vehicle performance, and reduced engine heat loads. Industries such as automotive, marine, industrial machinery, agricultural machinery, and construction machinery could also benefit from this technology.

    The solicitation is closed, and more information can be found on the Defense SBIR/STTR website.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - YTC Full Load Cooling
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "YTC Full Load Cooling" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop modernized data processing techniques to accurately assess the cooling capabilities of military vehicles with electronically controlled powertrains. The current testing methodologies and data processing techniques for fluid temperature data in critical systems of military vehicles are outdated and cannot be used for assessing vehicles with electronically controlled transmissions. The goal is to modernize the test methodology and utilize synthetic data generation techniques to accurately characterize the performance of the vehicle, even in extreme environments. The Phase I of the project will involve an initial site visit, development of a new Full Load Cooling (FLC) test methodology, characterization of powertrain derating, and submission of a final report. Phase II will focus on refining the FLC test methodology, developing a software program and Graphical User Interface (GUI) for synthetic data generation, and creating a test plan for field conditions. The potential impacts of this research include improved testing and assessment of military vehicles' cooling system performance, better understanding of powertrain derating, and the development of advanced data processing techniques. The research will leverage commercial industry data and expertise on electronically controlled powertrains and can have applications in modeling and simulation capabilities for engine and energy cooling, as well as in the manufacturing process for cooling systems and powertrains. The project duration is from 4QFY24 to 3QFY26, and interested parties can find more information and submit proposals on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
    DOD SBIR 24.4 Annual - YTC Full Load Cooling
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "YTC Full Load Cooling" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop modernized data processing techniques to accurately assess the cooling capabilities of military vehicles with electronically controlled powertrains. The current testing methodologies and data processing techniques for fluid temperature data in critical systems of military vehicles are outdated and cannot be used for assessing vehicles with electronically controlled transmissions. The goal is to modernize the test methodology and utilize synthetic data generation techniques to accurately characterize the performance of the vehicle, even in extreme environments. The research will involve developing a new Full Load Cooling (FLC) test methodology, mathematical formulae for data processing, and a methodology to characterize powertrain derating. The project will be conducted in two phases, with Phase I focusing on developing the initial plan and Phase II refining the methodology and developing a software program for data processing. The research has potential applications in the automotive industry and can contribute to the development of modeling and simulation capabilities for engine and energy cooling. The project duration is from 4QFY24 to 3QFY26, and interested parties can find more information and submit proposals on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" as part of the SBIR program. The research focuses on advancements in additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. The objective is to deliver combat power and lethality by achieving responsiveness, intensity, and the ability to deliver munitions at range. The technology sought includes propulsion solutions using high-density, storable, and rapidly loadable propellants, as well as advancements in understanding and characterizing novel fluid dynamics for enhanced propulsion performance. The solicitation is open for Phase II proposals only, and proposers must demonstrate feasibility and potential military or commercial applications. The Phase II effort consists of a base period of 12 months and an option period of 12 months. The ultimate goal is to transition and commercialize the developed technologies for both military and commercial applications, particularly in the areas of manned or unmanned air and space platforms.
    DOD SBIR 24.4 Annual - Helicopter Expedited Refueling Operations (HERO)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Helicopter Expedited Refueling Operations (HERO)" as part of the SBIR program. The objective of this solicitation is to develop solutions that increase the efficiency of setup, refueling operations, and disassembly of forward arming and refueling points (FARP) for rotary-winged assets. The goal is to reduce the amount of time these assets are unavailable for ground combat operations and decrease the likelihood of enemy detection and attack on the FARP. Currently, FARPs are vulnerable to enemy attack and require a significant number of personnel and equipment. Refueling times can take hours, and the FARP's limited defensive capabilities make mobility essential. The Army is looking for solutions that expedite the aggregation/setup/breakdown of FARP vehicles, decrease refueling times, improve pumping systems and equipment, and decrease aircraft wait times. The solicitation is open for proposals until March 31, 2025. The Phase I of the project requires Direct to Phase II (DP2) proposals that demonstrate scientific and technical merit, feasibility, and potential commercial applications. Phase II involves refining the design and creating a Technology Readiness Level (TRL) 6 prototype/model/system. Phase III focuses on commercialization objectives and may involve low-rate production and testing. The SBIR program provides funding for small businesses to develop innovative solutions that address specific research topics. In this case, the focus is on improving the efficiency and safety of helicopter refueling operations in military settings.
    DOD SBIR 24.4 Annual - Helicopter Expedited Refueling Operations (HERO)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Helicopter Expedited Refueling Operations (HERO)" as part of its SBIR program. The objective of this solicitation is to develop solutions that increase the efficiency of setup, refueling operations, and disassembly of forward arming and refueling points (FARP) for rotary-winged assets. The goal is to reduce the amount of time these assets are unavailable for ground combat operations and decrease the likelihood of enemy detection and attack on the FARP. Currently, FARPs are vulnerable to enemy attack and require a significant number of personnel and equipment. The Army is looking for solutions that expedite the aggregation, assembly, setup, and breakdown of FARP vehicles, hoses, and equipment. Additionally, they are interested in solutions that decrease aircraft refueling times, improve pumping systems, valves, hoses, and other FARP equipment, and decrease aircraft wait/loiter times. The solicitation is open for proposals until March 31, 2025. The Phase I of the project requires Direct to Phase II (DP2) proposals that demonstrate scientific and technical merit, feasibility, and potential commercial applications. Phase II involves refining the design and creating a Technology Readiness Level (TRL) 6 prototype/model/system. Phase III focuses on commercialization objectives and may involve developing a manufacturing-ready product design and engaging in laboratory or operational testing. The Army is particularly interested in solutions that integrate designated Army open standards, consider cost, and adapt to individual Soldiers' needs or scenarios. The funding specifics and performance goals will be provided in the solicitation document available on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of the SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The system could have broad military applications where rapid iteration and production are needed, and it may be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page.
    DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The potential impacts of this research include enabling rapid and iterative manufacturing processes for a broad range of military applications. The advanced manufacturing and modular design will be critical to all services where rapid iteration and production are needed. The system could be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page on the Defense SBIR/STTR website.
    DOD SBIR 24.4 Annual - Atmospheric Water Extraction Plus (AWE+)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Atmospheric Water Extraction Plus (AWE+)" as part of its SBIR program. The objective of this solicitation is to develop novel atmospheric water extraction technology with potential for energy use below 100Wh electric per liter of water generated across a wide range of environments. The technology should be integrated into a proof-of-concept prototype producing potable water with a clear path to full-size implementation. The DOD has a critical need to reduce water resupply requirements for mobile and self-sufficient operations. The development of AWE+ technology will have important tactical implications, reducing casualties and costs in forward operating environments. The goal is to provide potable water for a range of military needs by developing low-power, distributable systems that can provide water anywhere, anytime, and without the need for any external liquid water source. DARPA, the Defense Advanced Research Projects Agency, is specifically seeking teams with innovative means of releasing water from sorbents which is cyclically stable and has very low energy requirements. The technology should be able to produce water with not more than 100Wh electricity per liter of water produced, and not more than 100Wh thermal energy per liter of water produced. Proposals should outline a plan for reaching these energy metrics and provide an estimate for the range of environmental conditions at which the devices could operate. The project will be conducted in two phases. Phase I is a six-month effort focusing on proof-of-concept material and release mechanism development. Phase II is a 24-month effort with a base period of nine months, followed by two option periods. The performers will be expected to demonstrate functionality of their water capture and release mechanisms in a laboratory environment, producing at least 100mL of potable liquid water over a six-hour period with minimal loss in performance. The ultimate goal of this effort is to demonstrate AWE capable of meeting potable water needs for expeditionary scenarios with extremely high efficiency. Phase III will focus on transition within the DoD/military and further commercialization of the technology. Potential applications include satisfying military expeditionary water needs, reducing logistical footprint and vulnerability of supply lines, and developing next-generation dehumidification systems for residential and commercial HVAC. Keywords: Atmospheric water extraction, atmospheric water capture, atmospheric water harvesting, sorbent materials, advanced manufacturing. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - xTech Search 8 SBIR Finalist Open Topic Competition
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the xTech Search 8 SBIR Finalist Open Topic Competition. The objective of this solicitation is to find novel and disruptive concepts and technology solutions with dual-use capabilities that can address the Army's current needs and apply to current Army concepts. The technology areas of interest include Electronics, Human Systems, and Sensors. The Army is particularly interested in technologies related to Artificial Intelligence/Machine Learning, Advanced Materials, Advanced Manufacturing, Autonomy, Cyber, Human Performance, Immersive, Network Technologies, Position, Navigation and Timing (PNT), Power, Software Modernization, and Sensors. The Phase I of the project requires a feasibility study and concept plans, while Phase II involves producing prototype solutions for evaluation by soldiers. Phase III focuses on the maturation of the technology and commercialization. The solicitation is open until March 31, 2025. For more information, visit the solicitation agency website.