Electronic Threat Detection for Countermeasure Support
ID: N242-081Type: BOTH
Overview

Topic

Electronic Threat Detection for Countermeasure Support

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic of "Electronic Threat Detection for Countermeasure Support" as part of their SBIR 24.2 Annual solicitation. The Navy branch is specifically interested in this topic. The objective is to develop a technology capable of extracting actionable information from real-time and wideband electronic threats, including low-probability-of-intercept (LPI)/low-probability-of-detection (LPD) transmissions, to support electronic attack countermeasures. The technology should be able to identify threats quickly and accurately in dynamic operational environments, such as noisy environments, weak signals, and heavy interference. Proposals should include a detailed plan for an experimental demonstration during Phase I and a functional prototype platform by the end of Phase II. The proposed effort should utilize Commercial Off-the-Shelf (COTS) hardware as much as possible. The Phase I feasibility study should demonstrate the feasibility of the proposed wideband threat detection mechanisms, and Phase II should develop a prototype system that overcomes the technical limitations identified in Phase I. The work in Phase II may become classified. Phase III dual-use applications include including the demonstrated prototype in an end-to-end receiver demonstration for a classified program. The importance of encrypted communications and the reduction of pressure on password keys are also mentioned. The solicitation provides references and keywords related to the topic. The application due date is June 12, 2024. For more information, visit the SBIR topic link or the solicitation agency URL.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Tactical Implementation of Quantum Hardening
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Tactical Implementation of Quantum Hardening" as part of its SBIR program. The objective is to develop a tactical implementation of quantum hardening for Army systems on a tactical network to identify vulnerabilities, remove or remediate them, and maintain security against quantum cyber threats. The Army is interested in software that can future-proof Army networks related to quantum computing vulnerabilities. The ideal solution is a holistic suite of quantum-resistant security applications that can assess cryptographic security, implement quantum-resistant algorithms, and provide a crypto-agile framework to protect sensitive data. The project will involve analyzing Army networks, prioritizing critical networks, and transitioning to a quantum-safe architecture. The performer will prototype a software suite at technology readiness level 6, demonstrated in relevant environments. The project will have a Phase I and Phase II, with Phase II delivering a prototype for further Army evaluation. The performer will have access to a lab with tactical network capabilities and associated devices for iteration. The project will also include demonstrations at NetModX events in 2024 and 2025. Awardees may be eligible for a Phase IIb award after completing Phase II. Phase III will focus on commercialization objectives. The project is open for proposals until March 31, 2025. For more information, visit the solicitation agency URL: [link](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Ensuring Sensor Data Security and Integrity
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Ensuring Sensor Data Security and Integrity" as part of its SBIR program. The objective of this topic is to develop a platform that secures sensor data at the individual record level and supports experimentation to advance technology for DoD and Army Data Strategy VAULTIS goals. The platform should be cost-effective, flexible, and implemented through an Application Programming Interface (API) with no data size limitation. It should also ensure the integrity of sensor data throughout its lifecycle and incorporate attributes such as encryption, immutable data storage, audit and logging, and tamper-proof chain of custody. The Army aims to become more data-centric and capable of conducting operations in contested environments. The project will be conducted in two phases, with Direct to Phase II (DP2) proposals accepted for a cost of up to $2,000,000 for an 18-month period of performance. The contractor will be responsible for integrating, testing, demonstrating, and delivering a lightweight and scalable prototype data provenance solution. The solution should secure all sensor data at the individual record level and include database, replication, data audit, and encryption in a single integrated solution. It should also incorporate knowledge graphs, analytic visualization tools, and support data analysis. The use of blockchain technology is highlighted as a potential dual-use application for protecting sensor data fidelity in various sectors such as healthcare, critical infrastructure, smart homes, and autonomous vehicles. The project references the Army's data plan and strategic goals for 2040. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link provided: [DOD SBIR 24.4 Annual](https://www.sbir.gov/node/2608861).
DOD SBIR 24.4 Annual - Novel Positioning, Navigation, and Timing (PNT) Signal Classification Techniques
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a novel positioning, navigation, and timing (PNT) signal classification techniques. The purpose of this solicitation is to develop the capability to classify signals in real-time that impact navigation systems. The goal is to better understand the type of signals experienced in relevant environments to apply appropriate mitigation techniques. The current navigation systems depend on radio frequency (RF) signals that can be influenced by various interference sources. The challenge is to quickly understand the signal characteristics to react and mitigate negative impacts. The proposed solution aims to build upon AI/Machine Learning (ML) algorithm technologies to perform PNT signal classification in real-time. The project will involve developing two antenna systems capable of detecting and classifying interference signals, collecting relevant signals for training the AI/ML solution, and demonstrating the ability to detect and identify signal types in a relevant environment. The project will have a Phase I and Phase II, with Phase II focusing on the development and demonstration of the antenna systems. The anticipated duration of the project is until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR website.