TECHNOLOGY TRANSFER OPPORTUNITY: MMOD Impact Detection and Location (LAR-TOPS-245)
ID: T2P-LaRC-00116Type: Special Notice
Overview

Buyer

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONUS

PSC

MISCELLANEOUS ITEMS (9999)
Timeline
    Description

    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for determining micrometeoroid/orbital debris (MMOD) impact on orbiting spacecraft. This technology, developed by NASAs Langley Research Center, involves a strain-sensing system that can be affixed to a spacecrafts MMOD shielding layer or structure. It detects the occurrence, time, location, and severity of MMOD strikes, allowing for the detection and location of potentially harmful impacts on both crewed and unmanned spacecraft. This technology is important for assessing the risk to vehicles in the on-orbit MMOD environment, including commercial crew vehicles visiting the International Space Station (ISS). The technology utilizes one or more optical fibers with encoded strain sensors to record time-varying strain and identify the occurrence and timing of MMOD strikes. The residual plastic strain recorded by the strain sensors can also provide information on the location of the strike.

    Point(s) of Contact
    NASA’s Technology Transfer Program
    Agency-Patent-Licensing@mail.nasa.gov
    Files
    No associated files provided.
    Lifecycle
    Similar Opportunities
    TECHNOLOGY TRANSFER OPPORTUNITY: Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247). This technology provides a methodology to measure damage onset and growth in composite structures during fatigue loading. It combines thermal and acoustic emission nondestructive evaluation techniques to detect damage formation and growth. The technology can be used for improved safety and performance of composite structures during their life cycle. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Method of Non-Destructive Evaluation of Composites (LAR-TOPS-120)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a new Non-Destructive Testing (NDT) method for identifying and characterizing hidden damage in composite materials. This technology, developed by NASA's Langley Research Center, uses trapped energy analysis to detect and characterize damage that was previously obscured. The method requires only single sided access to the test specimen and provides a better understanding of composite damage, which is essential for repair and replacement decisions for aerospace composites. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Smart Optics Material Characterization System (LAR-TOPS-76)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Smart Optics Material Characterization System. This system, developed by NASA's Langley Research Center, is a wireless, open-circuit SansEC sensor that can detect the presence of chemicals without being in contact with them. It uses a unique thin-film design and a chemical reactant to detect specific chemicals in caustic or harsh environments. The sensors are cost-effective and environmentally friendly to manufacture and use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs) (LAR-TOPS-303)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs). This technology is used to monitor the cure rate of resins and detect defects in carbon fiber reinforced polymer composites, which are extensively used in aircraft, automotive, and other applications. The system measures temperature, strain, and guided waves during cure, allowing for life-cycle monitoring and damage detection. It is applicable to manufacturers of aircraft parts, marine hull sections, high-speed rail sections, automotive parts, and building parts. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Cord Tension Measurement Device (C-Gauge) (MSC-TOPS-83)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the Cord Tension Measurement Device (C-Gauge) (MSC-TOPS-83). The C-Gauge is a non-invasive tension measurement device for axial loaded cords used in cordage-based flexible structure systems such as parachutes and inflatable structures. It allows engineers to test cordage-based structures without severing the cords and provides a non-invasive way to measure the tension and loading of the structural components. The C-Gauge has potential applications in various fields including parachutes, inflatable structures, hot air balloons, weather balloons, blimps, sails, and parasails. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS) at https://technology.nasa.gov/patent/MSC-TOPS-83. For more information, contact NASA's Technology Transfer Program at Agency-Patent-Licensing@mail.nasa.gov. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Wireless Sensor for Pharmaceutical Packaging and Monitoring Applications (LAR-TOPS-77)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a wireless sensor for pharmaceutical packaging and monitoring applications. This sensor, developed by NASA's Langley Research Center, eliminates the need for physical contact and can monitor various attributes of a container, such as liquid or powder levels, temperature, changes caused by spoilage, and tampering. The sensor is damage resilient, environmentally friendly, and can measure multiple physical attributes simultaneously. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Electroactive Scaffold (LAR-TOPS-200)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a novel three-dimensional scaffold structure developed at NASA's Langley Research Center. This scaffold utilizes electroactive fibers for tissue and/or stem cell engineering, providing biochemical, mechanical, and electrical cues to mimic the native biological environment. The technology aims to develop novel tissue constructs and direct stem cells to differentiate down controlled pathways. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: System for In-situ Defect Detection in Composites During Cure (LAR-TOPS-327)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for in-situ defect detection in composites during cure. This technology, developed by NASA Langley Research Center, is an automated ultrasonic scanning system that actively scans for defects in composites during the cure process. It provides real-time monitoring of defect formation and movement, offering a better understanding of defect sources and sinks. The system consists of an ultrasonic portable automated C-Scan system with an attached ultrasonic contact probe, enclosed in an insulated vessel placed inside an autoclave. It can be used for non-destructive evaluation of composites in an oven or an autoclave, including thermosets, thermoplastics, composite laminates, high-temperature resins, and ceramics. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, please visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: LIDAR System Noise Reduction (LAR-TOPS-323)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a LIDAR System Noise Reduction technology. This technology utilizes a laser light source that is azimuthally polarized or has Orbital Angular Momentum (OAM) to overcome noise from solar background and backscatter. It can be used in space-based LIDARs to increase the signal-to-noise ratio (SNR) on the detectors by separating stray light from polarized laser light. The technology also has applications in encrypted communications, navigation, and short-range navigation for Urban Air Mobility (UAM) vehicles. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: More Reliable Doppler Lidar for Autonomous Navigation (LAR-TOPS-351)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a more reliable Doppler Lidar for autonomous navigation. This technology, known as Navigation Doppler Lidar (NDL), was pioneered by NASA for precision navigation and executing well-controlled landings on surfaces like the moon. The NDL utilizes the Frequency Modulated Continuous Wave (FMCW) technique to determine the distance to the target and the velocity between the sensor and target. However, the current sensor cannot determine the sign (+/-) of the signal frequencies, resulting in false measurements of range and velocity. NASA has developed an operational prototype of a method and algorithm that works with the receiver to correct this problem. The technology is available for license rights on an exclusive or nonexclusive basis and may include specific fields of use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information and to express interest, please visit the provided links. No follow-on procurement is expected from responses to this notice.