INL Innovation Spotlight Novel Training Surrogates for Emergency Response Training
Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFBATTELLE ENERGY ALLIANCE–DOE CNTRIdaho Falls, ID, 83415, USA

NAICS

Emergency and Other Relief Services (624230)

PSC

SUPPORT- PROFESSIONAL: EMERGENCY RESPONSE/DISASTER PLANNING/PREPAREDNESS SUPPORT (R429)
Timeline
    Description

    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking innovative solutions for the development of novel training surrogates for emergency response training. The objective is to create short-lived radioisotopes that can effectively simulate the behavior and emissions of actual radioactive materials, thereby providing realistic training scenarios for emergency response personnel without the associated radiotoxicity risks. This initiative is crucial for enhancing the preparedness of military and emergency response teams, as it addresses the challenges of training with hazardous materials while ensuring safety and environmental considerations. Interested parties can contact Andrew Rankin at andrew.rankin@inl.gov for further information regarding licensing opportunities and collaboration, as this project is not a solicitation for external services or funding.

    Point(s) of Contact
    Files
    No associated files provided.
    Lifecycle
    Similar Opportunities
    Tech Licensing Opportunity: ViBRANT: Visual Benign Reactor As Analog for Nuclear Testing
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance, is offering a technology licensing opportunity for ViBRANT (Visual Benign Reactor As Analog for Nuclear Testing), a novel approach to simulating nuclear reactor behaviors using an LED-based analog model. This initiative aims to address the challenges in nuclear reactor design and testing by providing a geometrically accurate representation of reactor cores, facilitating rapid iterations between digital simulations and physical models, and enhancing safety and accessibility in nuclear education and training. ViBRANT is positioned for various applications, including training tools for reactor operation, development platforms for automated control systems, and public engagement exhibits on nuclear technology. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further discussions on licensing terms and opportunities.
    INL Innovation Spotlight Advanced Radiation Monitoring: Fieldable Long-Length Scintillating Fibers
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking innovative solutions for advanced radiation monitoring utilizing fieldable long-length scintillating fibers. The objective is to develop a technology that effectively detects and monitors radiation in challenging environments, such as nuclear repositories and medical irradiation facilities, by employing durable scintillating fibers exceeding 10 meters in length, combined with standard optical fibers over 100 meters. This technology addresses significant challenges in radiation monitoring, offering enhanced signal integrity and flexible deployment options essential for the safety and security of sensitive sites. Interested parties can contact Andrew Rankin at andrew.rankin@inl.gov for further information on licensing opportunities and collaboration, as this initiative is not a call for external services or funding.
    Open Source Software: EMRALD: Pioneering Dynamic Risk Assessment for Enhanced Reliability and Safety
    Buyer not available
    The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking collaboration on the open-source software EMRALD, which focuses on dynamic risk assessment to enhance reliability and safety in nuclear power generation. The EMRALD software aims to revolutionize traditional probabilistic risk assessment (PRA) methods by providing a user-friendly interface and dynamic modeling capabilities that allow for real-time analysis of complex system interactions. This innovative tool is crucial for improving safety protocols in nuclear facilities and other industries by enabling detailed risk modeling and operational decision-making. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further information, as this opportunity emphasizes collaboration rather than procurement or funding.
    Efficient Additive Manufacturing for Advanced U-X Nuclear Fuel Alloys
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative technology for efficient additive manufacturing of advanced U-X nuclear fuel alloys. The objective is to revolutionize the production of U-X compounds, such as U3Si2 and U-Mo alloys, by utilizing a patented Laser Engineered Net Shaping (LENS) process that streamlines manufacturing, reduces costs, and enhances safety compared to traditional methods. This technology is crucial for applications in commercial nuclear reactors, research reactors, and defense and space sectors, facilitating the production of next-generation accident-tolerant fuels. Interested companies should contact the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing rather than procurement or hiring services.
    Training and Readiness Accelerator (TReX II) Other Transaction Agreement (OTA) Request for Solutions (RFS): TReXll-25-02 RED-093/094: Nuclear Environments Test (NET) Prototype Projects
    Buyer not available
    The Department of Defense, specifically the Department of the Army, is seeking solutions through the Training and Readiness Accelerator (TReX II) Other Transaction Agreement (OTA) for Nuclear Environments Test (NET) Prototype Projects. This initiative aims to develop innovative research and development solutions in the physical, engineering, and life sciences sectors, particularly focusing on national defense applications. The selected projects will contribute to advancing military capabilities in nuclear environments, which are critical for ensuring operational readiness and effectiveness. Interested parties should refer to the Special Notice for further details and submission guidelines, as specific deadlines and funding amounts have not been disclosed in the overview.
    OPEN-SOURCE SOFTWARE LICENSING OPPORTUNITY RAVEN: Comprehensive Uncertainty Quantification and Optimization for Complex Systems
    Buyer not available
    The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory (INL), is offering an open-source software licensing opportunity for RAVEN, a comprehensive framework designed for uncertainty quantification and optimization in complex systems. This initiative aims to provide access to advanced analytical tools that integrate statistical, data analysis, and AI techniques, particularly for applications in nuclear power plants and other complex environments. RAVEN, developed under the Light Water Reactor Sustainability program, is essential for modern risk evaluation and supports various analysis methods, including regression and data mining, while facilitating integration with third-party software. Interested parties can access the software at https://github.com/idaholab/raven and are encouraged to contact Andrew Rankin at andrew.rankin@inl.gov for further discussions on licensing opportunities and collaboration.
    Open Source Software: SR2ML: Pioneering Safety and Reliability in Nuclear Plant Management
    Buyer not available
    The Department of Energy is seeking to advance nuclear plant management through the development of the SR2ML (Safety-Risk-Reliability Model Library), an open-source software package designed to enhance safety and reliability in nuclear operations. This initiative aims to provide a comprehensive suite of safety and reliability analysis models that integrate with the RAVEN code, facilitating dynamic risk analysis and optimizing operational guidelines to reduce costs while ensuring safety. The SR2ML software is crucial for the nuclear power sector, addressing the challenges of balancing operational efficiency and safety in a competitive environment. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further information regarding this opportunity.
    Tech Licensing Opportunity: Generative Adversarial Networks for EM Signature Generation
    Buyer not available
    The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory, is offering a technology licensing opportunity focused on Generative Adversarial Networks (GANs) for generating electromagnetic (EM) signatures to enhance software security analysis. This innovative technology aims to automate the traditionally labor-intensive process of side-channel analysis, significantly reducing costs and improving the efficiency of detecting vulnerabilities in firmware and software, particularly in embedded systems. The technology is particularly relevant for organizations seeking to secure their software against side-channel attacks and for academic institutions engaged in cybersecurity research. Interested parties can contact Andrew Rankin at andrew.rankin@inl.gov for further details on licensing opportunities and collaboration.
    INL Innovation Spotlight Precision Enhancement for Thermocouples: A Leap in Measurement Accuracy
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking partnerships to commercialize an innovative technology aimed at enhancing the precision of thermocouples, which are critical for accurate temperature measurement across various industries. This technology utilizes ohmic heating to stabilize thermocouples, significantly improving their accuracy and lifespan while addressing the common issue of accuracy drift, particularly in high-temperature or radiation environments. With applications spanning manufacturing, aerospace, energy production, and healthcare, this advancement represents a significant leap in measurement reliability. Interested parties can learn more about licensing opportunities by contacting Andrew Rankin at andrew.rankin@inl.gov.
    Tech Licensing Opportunity: Advanced Bonding Method for Heterogeneous Systems
    Buyer not available
    The Department of Energy is offering a technology licensing opportunity for an advanced bonding method designed for heterogeneous systems, developed by researchers at the Idaho National Laboratory (INL). This innovative method allows for the seamless bonding of similar and dissimilar materials without visible bond lines, significantly enhancing material integrity and durability while reducing energy consumption compared to traditional bonding techniques. The technology is particularly relevant for industries such as aerospace, electronics, and nuclear, where material reliability is critical. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further discussions on licensing terms and opportunities for collaboration.