Additive Manufacturing Model-based Process Metrics (AM-PM) (LAR-TOPS-368)
ID: T2P-LaRC-00140Type: Special Notice
Overview

Buyer

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONUS

PSC

MISCELLANEOUS ITEMS (9999)
Timeline
    Description

    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market Additive Manufacturing Model-based Process Metrics (AM-PM). This technology enables flexible fabrication of components from various materials and is particularly useful in aerospace parts manufacturing. The AM-PM method, currently at technology readiness level 6, allows for fast and efficient evaluations of additive manufacturing build files and parts. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.

    Point(s) of Contact
    NASA’s Technology Transfer Program
    Agency-Patent-Licensing@mail.nasa.gov
    Files
    No associated files provided.
    Lifecycle
    Similar Opportunities
    TECHNOLOGY TRANSFER OPPORTUNITY: In-situ Characterization and Inspection of Additive Manufacturing Deposits using Transient Infrared Thermography (LAR-TOPS-265)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology related to in-situ characterization and inspection of additive manufacturing deposits using transient infrared thermography. This technology provides a more reliable non-destructive evaluation method for measuring material properties and detecting defects during the additive manufacturing process. It has applications in various industries including industrial manufacturing, medical, architecture, aerospace, and automotive. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: AERoBOND: Large-scale Composite Manufacturing (LAR-TOPS-357)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the AERoBOND technology for large-scale composite manufacturing. This technology offers a method for manufacturing composites at scale with the reliability of co-cure in a bonded assembly process. It utilizes novel epoxy and barrier ply layers to enable the bonding of large, complex composites without the need for redundant fasteners, reducing assembly time and cost. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs) (LAR-TOPS-303)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs). This technology is used to monitor the cure rate of resins and detect defects in carbon fiber reinforced polymer composites, which are extensively used in aircraft, automotive, and other applications. The system measures temperature, strain, and guided waves during cure, allowing for life-cycle monitoring and damage detection. It is applicable to manufacturers of aircraft parts, marine hull sections, high-speed rail sections, automotive parts, and building parts. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Laser Linear Frequency Modulation System (LAR-TOPS-95)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the Laser Linear Frequency Modulation System (LAR-TOPS-95). This breakthrough technology improves laser frequency modulation for precision laser radar (lidar) applications. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Material for Structural Health Monitoring (LAR-TOPS-195)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a novel polymer material developed by NASA Langley Research Center. The material is used as a real-time structural health monitoring sensor, generating a signal in response to a mechanical force. It is highly elastic, allowing for a large range of measurable strain levels, and is highly durable. The material can be manufactured into micro- and/or nanofibers and can be spun directly onto composite panels or embedded within the material. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247). This technology provides a methodology to measure damage onset and growth in composite structures during fatigue loading. It combines thermal and acoustic emission nondestructive evaluation techniques to detect damage formation and growth. The technology can be used for improved safety and performance of composite structures during their life cycle. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Method of Non-Destructive Evaluation of Composites (LAR-TOPS-120)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a new Non-Destructive Testing (NDT) method for identifying and characterizing hidden damage in composite materials. This technology, developed by NASA's Langley Research Center, uses trapped energy analysis to detect and characterize damage that was previously obscured. The method requires only single sided access to the test specimen and provides a better understanding of composite damage, which is essential for repair and replacement decisions for aerospace composites. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Assembly for Simplified Hi-Res Flow Visualization (LAR-TOPS-348)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a simplified hi-res flow visualization assembly. This assembly, developed by researchers at NASA's Langley Research Center, is a compact and easy-to-use optical system that enables focusing schlieren imaging. It reduces complexity and alignment time compared to conventional systems, and is self-aligned, compact, and cost-effective. The assembly can be attached to a commercial-off-the-shelf camera and is capable of fields-of-view of 10 and 300 millimeters. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Electroactive Scaffold (LAR-TOPS-200)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a novel three-dimensional scaffold structure developed at NASA's Langley Research Center. This scaffold utilizes electroactive fibers for tissue and/or stem cell engineering, providing biochemical, mechanical, and electrical cues to mimic the native biological environment. The technology aims to develop novel tissue constructs and direct stem cells to differentiate down controlled pathways. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Handheld Metal Tube Straightener (MSC-TOPS-107)
    Active
    National Aeronautics And Space Administration
    NASA's Technology Transfer Program is seeking companies interested in obtaining license rights to commercialize, manufacture, and market the Handheld Metal Tube Straightener (MSC-TOPS-107). This innovative tool, developed by researchers at NASA Johnson Space Center, is designed to effectively remove bends within 3.5 inches of a tube end, specifically for thin, malleable 4mm metal tubes used in fuel, pneumatic, or hydraulic pressurized lines. The handheld straightener addresses limitations of existing commercial tube straighteners, which struggle with bend removal near the tube's end and can leave scratches on the surface. Interested parties should submit a license application through NASA’s Automated Technology Licensing Application System (ATLAS) and direct any inquiries to NASA’s Technology Transfer Program at Agency-Patent-Licensing@mail.nasa.gov. Note that no funding is provided in conjunction with these licenses, and responses will be used for market research purposes.