TECHNOLOGY TRANSFER OPPORTUNITY: Cavity Noise Reduction Technology (LAR-TOPS-44)
ID: T2P-LaRC-00133Type: Special Notice
Overview

Buyer

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONUS

PSC

MISCELLANEOUS ITEMS (9999)
Timeline
    Description

    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking companies interested in obtaining license rights to commercialize, manufacture, and market a cavity noise reduction technology. This technology, developed by NASA's Langley Research Center, is an innovative stretchable mesh assembly that reduces noise produced during aircraft approach and landing. It promotes the growth of three-dimensional flow structures within the landing gear cavity, effectively reducing shear layer roll-up and eliminating cavity noise. The stretchable mesh concept has been tested and proven more effective than rigid mesh in reducing landing gear cavity noise. NASA is looking for partners interested in co-development or licensure of the technology for various applications. No funding is provided by NASA for these licenses. To express interest, submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.

    Point(s) of Contact
    NASA’s Technology Transfer Program
    Agency-Patent-Licensing@mail.nasa.gov
    Files
    No associated files provided.
    Lifecycle
    Similar Opportunities
    TECHNOLOGY TRANSFER OPPORTUNITY: LIDAR System Noise Reduction (LAR-TOPS-323)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a LIDAR System Noise Reduction technology. This technology utilizes a laser light source that is azimuthally polarized or has Orbital Angular Momentum (OAM) to overcome noise from solar background and backscatter. It can be used in space-based LIDARs to increase the signal-to-noise ratio (SNR) on the detectors by separating stray light from polarized laser light. The technology also has applications in encrypted communications, navigation, and short-range navigation for Urban Air Mobility (UAM) vehicles. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Compact Vibration Damper (LAR-TOPS-189)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a compact vibration damper. This technology, developed by NASA Langley Research Center, is designed to reduce vibration occurring at a fixed frequency. The damper allows for greater range of motion and effectiveness compared to conventional devices. It can be used in various applications such as wind tunnel tests, helicopters, wind turbines, and skyscrapers. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247). This technology provides a methodology to measure damage onset and growth in composite structures during fatigue loading. It combines thermal and acoustic emission nondestructive evaluation techniques to detect damage formation and growth. The technology can be used for improved safety and performance of composite structures during their life cycle. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Method of Non-Destructive Evaluation of Composites (LAR-TOPS-120)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a new Non-Destructive Testing (NDT) method for identifying and characterizing hidden damage in composite materials. This technology, developed by NASA's Langley Research Center, uses trapped energy analysis to detect and characterize damage that was previously obscured. The method requires only single sided access to the test specimen and provides a better understanding of composite damage, which is essential for repair and replacement decisions for aerospace composites. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs) (LAR-TOPS-303)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs). This technology is used to monitor the cure rate of resins and detect defects in carbon fiber reinforced polymer composites, which are extensively used in aircraft, automotive, and other applications. The system measures temperature, strain, and guided waves during cure, allowing for life-cycle monitoring and damage detection. It is applicable to manufacturers of aircraft parts, marine hull sections, high-speed rail sections, automotive parts, and building parts. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Electroactive Scaffold (LAR-TOPS-200)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a novel three-dimensional scaffold structure developed at NASA's Langley Research Center. This scaffold utilizes electroactive fibers for tissue and/or stem cell engineering, providing biochemical, mechanical, and electrical cues to mimic the native biological environment. The technology aims to develop novel tissue constructs and direct stem cells to differentiate down controlled pathways. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Assembly for Simplified Hi-Res Flow Visualization (LAR-TOPS-348)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a simplified hi-res flow visualization assembly. This assembly, developed by researchers at NASA's Langley Research Center, is a compact and easy-to-use optical system that enables focusing schlieren imaging. It reduces complexity and alignment time compared to conventional systems, and is self-aligned, compact, and cost-effective. The assembly can be attached to a commercial-off-the-shelf camera and is capable of fields-of-view of 10 and 300 millimeters. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Small Compound-Wing VTOL UAS (LAR-TOPS-293)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Small Compound-Wing VTOL UAS technology. This technology combines vertical takeoff and landing (VTOL) convenience with fixed-wing endurance, making it suitable for flying in adverse environmental conditions. The UAS features a novel three-segment wing design and a controlled-articulation wing system for direct control in different modes of operation. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: More Reliable Doppler Lidar for Autonomous Navigation (LAR-TOPS-351)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a more reliable Doppler Lidar for autonomous navigation. This technology, known as Navigation Doppler Lidar (NDL), was pioneered by NASA for precision navigation and executing well-controlled landings on surfaces like the moon. The NDL utilizes the Frequency Modulated Continuous Wave (FMCW) technique to determine the distance to the target and the velocity between the sensor and target. However, the current sensor cannot determine the sign (+/-) of the signal frequencies, resulting in false measurements of range and velocity. NASA has developed an operational prototype of a method and algorithm that works with the receiver to correct this problem. The technology is available for license rights on an exclusive or nonexclusive basis and may include specific fields of use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information and to express interest, please visit the provided links. No follow-on procurement is expected from responses to this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Full Spectrum Infrasonic Stethoscope for Screening Heart, Carotid Artery, and Lung Related Diseases (LAR-TOPS-278)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Full Spectrum Infrasonic Stethoscope for Screening Heart, Carotid Artery, and Lung Related Diseases (LAR-TOPS-278). This technology, developed by NASA Langley Research Center, detects a broader range of physiological conditions than conventional stethoscopes. It provides additional data to physicians by monitoring signals across full frequency bandwidths, including cardiac, carotid artery, and respiration activities. The stethoscope can be wirelessly transmitted to other recording devices using Bluetooth. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided by NASA in conjunction with these potential licenses. For more information, please visit the NASA Technology Transfer Portal.