TECHNOLOGY TRANSFER OPPORTUNITY: In-situ Characterization and Inspection of Additive Manufacturing Deposits using Transient Infrared Thermography (LAR-TOPS-265)
ID: T2P-LaRC-00158Type: Special Notice
Overview

Buyer

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNASA LANGLEY RESEARCH CENTERHAMPTON, VA, 23681, USA

NAICS

Space Research and Technology (927110)

PSC

MISCELLANEOUS ITEMS (9999)
Timeline
    Description

    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology related to in-situ characterization and inspection of additive manufacturing deposits using transient infrared thermography. This technology provides a more reliable non-destructive evaluation method for measuring material properties and detecting defects during the additive manufacturing process. It has applications in various industries including industrial manufacturing, medical, architecture, aerospace, and automotive. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.

    Point(s) of Contact
    NASA’s Technology Transfer Program
    Agency-Patent-Licensing@mail.nasa.gov
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY TRANSFER OPPORTUNITY: Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247). This technology provides a methodology to measure damage onset and growth in composite structures during fatigue loading. It combines thermal and acoustic emission nondestructive evaluation techniques to detect damage formation and growth. The technology can be used for improved safety and performance of composite structures during their life cycle. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: System for In-situ Defect Detection in Composites During Cure (LAR-TOPS-327)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for in-situ defect detection in composites during cure. This technology, developed by NASA Langley Research Center, is an automated ultrasonic scanning system that actively scans for defects in composites during the cure process. It provides real-time monitoring of defect formation and movement, offering a better understanding of defect sources and sinks. The system consists of an ultrasonic portable automated C-Scan system with an attached ultrasonic contact probe, enclosed in an insulated vessel placed inside an autoclave. It can be used for non-destructive evaluation of composites in an oven or an autoclave, including thermosets, thermoplastics, composite laminates, high-temperature resins, and ceramics. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, please visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Method of Non-Destructive Evaluation of Composites (LAR-TOPS-120)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a new Non-Destructive Testing (NDT) method for identifying and characterizing hidden damage in composite materials. This technology, developed by NASA's Langley Research Center, uses trapped energy analysis to detect and characterize damage that was previously obscured. The method requires only single sided access to the test specimen and provides a better understanding of composite damage, which is essential for repair and replacement decisions for aerospace composites. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: X-Ray Crack Detectability (MSC-TOPS-106)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology related to X-ray crack detectability. This technology, developed by innovators at NASA Johnson Space Center, allows users to optimize X-ray radiography setups to detect cracks of various sizes within materials. The technology is at a technology readiness level (TRL) 6 and is available for licensing. Interested companies can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs) (LAR-TOPS-303)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs). This technology is used to monitor the cure rate of resins and detect defects in carbon fiber reinforced polymer composites, which are extensively used in aircraft, automotive, and other applications. The system measures temperature, strain, and guided waves during cure, allowing for life-cycle monitoring and damage detection. It is applicable to manufacturers of aircraft parts, marine hull sections, high-speed rail sections, automotive parts, and building parts. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: AERoBOND: Large-scale Composite Manufacturing (LAR-TOPS-357)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the AERoBOND technology for large-scale composite manufacturing. This technology offers a method for manufacturing composites at scale with the reliability of co-cure in a bonded assembly process. It utilizes novel epoxy and barrier ply layers to enable the bonding of large, complex composites without the need for redundant fasteners, reducing assembly time and cost. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Assembly for Simplified Hi-Res Flow Visualization (LAR-TOPS-348)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a simplified hi-res flow visualization assembly. This assembly, developed by researchers at NASA's Langley Research Center, is a compact and easy-to-use optical system that enables focusing schlieren imaging. It reduces complexity and alignment time compared to conventional systems, and is self-aligned, compact, and cost-effective. The assembly can be attached to a commercial-off-the-shelf camera and is capable of fields-of-view of 10 and 300 millimeters. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Robotic Inspection System for Fluid Infrastructures (MSC-TOPS-70)
    National Aeronautics And Space Administration
    NASA's Technology Transfer Program is seeking companies interested in licensing a Robotic Inspection System designed for surveying deep-sea structures, such as oil platform storage tanks and pipelines. This innovative technology, developed by NASA Johnson Space Center, enables the assessment of material volume, structural integrity, and provides real-time video and sonar capabilities, potentially reducing inspection costs significantly. The licensing opportunity is available on both exclusive and nonexclusive bases, and interested parties can submit their applications through NASA’s Automated Technology Licensing Application System (ATLAS) at the provided link. For further inquiries, companies may contact NASA’s Technology Transfer Program via email at Agency-Patent-Licensing@mail.nasa.gov.
    TECHNOLOGY TRANSFER OPPORTUNITY: Smart Optics Material Characterization System (LAR-TOPS-76)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Smart Optics Material Characterization System. This system, developed by NASA's Langley Research Center, is a wireless, open-circuit SansEC sensor that can detect the presence of chemicals without being in contact with them. It uses a unique thin-film design and a chemical reactant to detect specific chemicals in caustic or harsh environments. The sensors are cost-effective and environmentally friendly to manufacture and use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Crack Image Quality Indicator (CIQI) (MSC-TOPS-87)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking companies interested in obtaining license rights to commercialize, manufacture, and market the Crack Image Quality Indicator (CIQI) technology. This technology, developed by NASA Johnson Space Center, generates unique verification tools for simulating cracks in metals within X-ray setup part-testing geometries. The tooling specimens enable verification of x-ray radiography sensitivity for crack detection inspection setups. An ideal crack demonstration tool matching the alloy type, geometry, thickness, and expected crack morphology of components to be tested is required. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.