Development of Advanced Surface Treatments for Astroquartz Fibers
ID: AF242-D018Type: BOTH
Overview

Topic

Development of Advanced Surface Treatments for Astroquartz Fibers

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for the development of advanced surface treatments for Astroquartz fibers. The objective of this project is to increase the environmental and thermal durability of various Polymer Matrix Composite (PMC) systems, which include a range of resin matrices from 350 degree Fahrenheit-curing epoxies to advanced polyimides. Astroquartz-reinforced PMCs are widely used in radome applications on aircraft due to their excellent dielectric properties. However, their limited durability can impact their service life and maintainability. The project aims to identify key factors contributing to limited durability, develop optimized surface treatment processes for Astroquartz reinforcements, and develop tailored coupling agents to enhance durability. This is a Direct-to-Phase-II (D2P2) topic, meaning no Phase I awards will be made. In Phase II, the awardee(s) will conduct a comprehensive root cause analysis and develop optimized surface treatment processes or tailored coupling agents. In Phase III, the awardee(s) can pursue commercialization of the technology and scale up production. The contractor must also generate qualification data on the final Astroquartz fabric PMC. The project is open for proposals until June 12, 2024. For more information, visit the solicitation link.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Multisystem Mobile Corrosion Unit
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a research topic titled "Multisystem Mobile Corrosion Unit" as part of their SBIR program. The objective of this topic is to develop a deployable solution for the Army's major corrosion issue, allowing for repairs in austere environments while in the field. The solution should include capabilities such as laser ablation, corrosion preventative coating application, cold spray, plasma blast, welding, and more. The project will consist of two phases, with Phase I accepting proposals for up to $250,000 for a 6-month period to develop a proof-of-concept prototype. Phase II will involve developing a deployment-ready multisystem corrosion unit. The technology has potential applications in industries such as automotive, aircraft, construction, agriculture, and power and energy. The project duration is not specified, and interested parties can find more information and submit proposals on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" as part of the SBIR program. The research focuses on advancements in additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. The objective is to deliver combat power and lethality by achieving responsiveness, intensity, and the ability to deliver munitions at range. The technology sought includes propulsion solutions using high-density, storable, and rapidly loadable propellants, as well as advancements in understanding and characterizing novel fluid dynamics for enhanced propulsion performance. The solicitation is open for Phase II proposals only, and proposers must demonstrate feasibility and potential military or commercial applications. The Phase II effort consists of a base period of 12 months and an option period of 12 months. The ultimate goal is to transition and commercialize the developed technologies for both military and commercial applications, particularly in the areas of manned or unmanned air and space platforms.
    DOD SBIR 24.4 Annual - Tactical Implementation of Quantum Hardening
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Tactical Implementation of Quantum Hardening" as part of its SBIR program. The objective is to develop a tactical implementation of quantum hardening for Army systems on a tactical network to identify vulnerabilities, remove or remediate them, and maintain security against quantum cyber threats. The Army is interested in software that can aid in future-proofing Army networks related to quantum computing vulnerabilities. The performer will prototype a representative software suite at technology readiness level 6, demonstrated in relevant environments. The ideal solution is a holistic suite of quantum-resistant security applications that can help organizations assess their cryptographic security posture, implement quantum-resistant cryptographic algorithms, and provide a crypto-agile framework to protect sensitive data from adversarial quantum computer attacks. The project will be conducted in two phases, with the second phase involving the development, building, and demonstration of a prototype. The performer will have access to a lab with tactical network capabilities and associated devices for iteration. A final demonstration will be conducted at NetModX 2025. Awardees may also be eligible for a Phase IIb award after completion of Phase II. The objective of Phase III is for the small business to pursue commercialization objectives through system-level integration and prototype demonstration. The topic is restricted under ITAR and EAR regulations. The deadline for proposal submission is March 31, 2025. For more information, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Tactical Implementation of Quantum Hardening
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Tactical Implementation of Quantum Hardening" as part of its SBIR program. The objective is to develop a tactical implementation of quantum hardening for Army systems on a tactical network to identify vulnerabilities, remove or remediate them, and maintain security against quantum cyber threats. The Army is interested in software that can future-proof Army networks related to quantum computing vulnerabilities. The ideal solution is a holistic suite of quantum-resistant security applications that can assess cryptographic security, implement quantum-resistant algorithms, and provide a crypto-agile framework to protect sensitive data. The project will involve analyzing Army networks, prioritizing critical networks, and transitioning to a quantum-safe architecture. The performer will prototype a software suite at technology readiness level 6, demonstrated in relevant environments. The project will have a Phase I and Phase II, with Phase II delivering a prototype for further Army evaluation. The performer will have access to a lab with tactical network capabilities and associated devices for iteration. The project will also include demonstrations at NetModX events in 2024 and 2025. Awardees may be eligible for a Phase IIb award after completing Phase II. Phase III will focus on commercialization objectives. The project is open for proposals until March 31, 2025. For more information, visit the solicitation agency URL: link.
    DOD STTR 24.D Annual - Optical-Atomic System Integration & Calibration (OASIC)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Optical-Atomic System Integration & Calibration (OASIC)" as part of the Small Business Innovation Research (SBIR) program. The objective is to create a user facility for an atom-based quantum testbed that can prototype, validate, and benchmark nanophotonic, optoelectronic, and electronic components and sub-systems. The goal is to enable the development of scalable, low-SWaP atom-based quantum sensors, clocks, computing architectures, and other integrated or chip-scale quantum technologies. The solicitation emphasizes the need for rigorous testing and evaluation procedures compatible with the performance requirements of atom-based quantum devices. The Phase I of the project will focus on designing and analyzing the performance and operation of the proposed testbed user facility, as well as developing an operation and business plan. The Phase II will involve constructing and demonstrating the quantum testbed based on the Phase I design. The project duration for Phase I is 4 months, and for Phase II is 24 months. The solicitation encourages the development of integrated, low-SWaP quantum systems for applications in defense and commercial markets. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of the SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The system could have broad military applications where rapid iteration and production are needed, and it may be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page.
    DOD SBIR 24.4 Annual - Low-cost Longwave Bolometer Camera Fabrication Techniques
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Low-cost Longwave Bolometer Camera Fabrication Techniques" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop novel technologies and fabrication techniques to reduce the cost of sensor payloads based on resistive microbolometer technology. The focus is on reducing the unit cost of the focal plane array and supporting a low-cost sensor. The solutions should be ready to transition into a camera module development effort by the end of Phase II. The solicitation emphasizes the importance of thermal longwave infrared (LWIR) capabilities in various Army applications and the need for a thermal sensor payload with high-definition array and dramatically reduced unit price. The solutions can involve novel manufacturing techniques, new materials systems, innovative component or module designs, or other approaches. Direct to Phase II contracts will focus on demonstrating enabling developments, and Phase II sequential efforts will deliver a prototype payload meeting the specified requirements for evaluation by Army Unmanned Aircraft Systems (UAS) or other programs. Phase I of the solicitation is only accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for an 18-month period of performance. DP2 proposals are highly encouraged if they meet the requirements. Proposals should demonstrate the estimated cost reduction compared to products made with current fabrication techniques and discuss the impact on size, weight, and power of a complete camera module. Initial ideas on potential paths for integration into a production camera module should also be discussed. Phase II involves designing and fabricating a prototype device that demonstrates the proposed solution to reduce thermal sensor payload unit cost. The impact of the solution on the unit price of a final sensor payload and its incorporation into such a payload should be discussed. Relevant interfaces should be defined and documented, and potential partnerships with integrators or other companies for follow-on efforts should be considered. In Phase III, the solicitation highlights the potential dual-use applications of leveraging bolometer manufacturing methods for low-cost long wave infrared (LWIR) sensors. These applications include smartphone camera augmentation, UAV camera augmentation (specifically via the Office of Naval Research), home security systems, and climate tech via quantum dot (QD) development. Overall, this solicitation seeks innovative solutions to reduce the cost of thermal sensor payloads based on resistive microbolometer technology, with potential applications in various military and commercial sectors.