Low-Loss Magnetless Optical Isolators for Quantum Integrated Photonics Applications
ID: AF233-D029Type: BOTH
Overview

Topic

Low-Loss Magnetless Optical Isolators for Quantum Integrated Photonics Applications

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2023

Additional Information

https://www.defensesbirsttr.mil/
Timeline
  1. 1
    Release Aug 23, 2023 12:00 AM
  2. 2
    Open Sep 20, 2023 12:00 AM
  3. 3
    Next Submission Due Oct 18, 2023 12:00 AM
  4. 4
    Close Oct 18, 2023 12:00 AM
Description

The Department of Defense (DoD) is seeking proposals for the development of low-loss magnetless optical isolators for quantum integrated photonics applications. The objective of this solicitation is to develop wafer scale processes to produce compact and robust isolators that can be integrated with commercial silicon photonics foundries. The isolators should target isolation of 780 nm optical wavelength for quantum applications, with an optical loss of less than 3 dB and an isolation ratio of more than 20 dB. The technology should be magnetless to avoid disrupting single photon quantum entanglement processes. The Phase I award is not required, and the offeror should provide a feasibility study and device designs demonstrating magnetless optical isolation. In Phase II, the offeror will develop the device design and fabrication process, fabricate and characterize the device, and adapt it to a platform compatible with commercial integrated photonics foundries. Phase III will focus on commercialization and transitioning the technology to a broad range of potential government and civilian users. The contractor will pursue partnerships with commercial integrated photonics foundries and aim for Technology Readiness Level 4 before entering Phase III. The foundry must be accessible by the Department of the Air Force for DoD applications. The solicitation is closed, and more information can be found on the DoD SBIR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD STTR 24.D Annual - Optical-Atomic System Integration & Calibration (OASIC)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Optical-Atomic System Integration & Calibration (OASIC)" as part of the Small Business Innovation Research (SBIR) program. The objective is to create a user facility for an atom-based quantum testbed that can prototype, validate, and benchmark nanophotonic, optoelectronic, and electronic components and sub-systems. The goal is to enable the development of scalable, low-SWaP atom-based quantum sensors, clocks, computing architectures, and other integrated or chip-scale quantum technologies. The solicitation emphasizes the need for rigorous testing and evaluation procedures compatible with the performance requirements of atom-based quantum devices. The Phase I of the project will focus on designing and analyzing the performance and operation of the proposed testbed user facility, as well as developing an operation and business plan. The Phase II will involve constructing and demonstrating the quantum testbed based on the Phase I design. The project duration for Phase I is 4 months, and for Phase II is 24 months. The solicitation encourages the development of integrated, low-SWaP quantum systems for applications in defense and commercial markets. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2506137).
DOD SBIR 24.4 Annual - Portable Diamond NV-Based Quantum Magnetometer for Enhanced Detection of Person-Borne Improvised Explosive Devices (PBIEDs)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a portable Diamond Nitrogen-Vacancy (NV) Center-based Quantum Magnetometer for enhanced detection of Person-Borne Improvised Explosive Devices (PBIEDs). Quantum magnetometers utilizing Diamond NV technology offer significant advancements in sensitivity and precision for detecting minor fluctuations in magnetic fields. The magnetometers provide benefits such as exceptional sensitivity, robustness, durability, and non-invasive detection. However, challenges include manufacturing complexity, cost, false positives in metal-rich environments, and limitations in detection range and depth. The solicitation invites proposals for designing a portable Diamond NV-based Quantum Magnetometer that addresses these challenges and demonstrates a thorough understanding of operational contexts. The project will be conducted in three phases: Phase I involves foundational groundwork and design schematics, Phase II focuses on developing a working prototype, and Phase III involves refining the final deployable equipment and procedures. The development of a better magnetometer has the potential to provide significant benefits to numerous programs within the DoD. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2651331).
DOD STTR 24.D Annual - Optical-Atomic System Integration & Calibration (OASIC)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Optical-Atomic System Integration & Calibration (OASIC)" as part of the Small Business Innovation Research (SBIR) program. The objective is to create a user facility for an atom-based quantum testbed that can prototype, validate, and benchmark nanophotonic, optoelectronic, and electronic components and sub-systems. The goal is to enable the development of scalable, low-SWaP atom-based quantum sensors, clocks, computing architectures, and other integrated or chip-scale quantum technologies. The solicitation emphasizes the need for rigorous testing and evaluation procedures compatible with the performance requirements of atom-based quantum devices. The Phase I of the project will involve designing and analyzing the performance and operation of the proposed quantum testbed user facility, as well as developing an operation and business plan. The Phase II will focus on constructing and demonstrating the quantum testbed based on the Phase I design. The project duration for Phase II is 24 months. The development of integrated, low-SWaP quantum systems has applications in defense, communications, logistics, exploration, pharmaceuticals, and scientific research. The solicitation encourages the facility to be located at an academic site with a commercial entity responsible for operation and management. The Phase II milestones include reports on component acquisition and fabrication, interim progress reports, and a final report describing the construction and benchmarking of the quantum testbed. The Phase III of the project involves the dual-use applications of the developed quantum systems in both defense and commercial sectors.