Automated and Modular Forward Deployed Biomanufacturing Unit for Warfighter Field Feeding at Point of Need
ID: A244-053Type: BOTH
Overview

Topic

Automated and Modular Forward Deployed Biomanufacturing Unit for Warfighter Field Feeding at Point of Need

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for an Automated and Modular Forward Deployed Biomanufacturing Unit for Warfighter Field Feeding at Point of Need. The objective is to advance research in biotechnology to safely produce nutritious food at the point of need, overcoming contested logistics and ensuring food security. The research aims to utilize synthetic biology to yield fermented foods that meet warfighter nutrition standards. The goal is to develop a fully integrated system capable of producing enough biomass to meet the nutritional needs of 14 male warfighters for 24 hours within a maximum 5-day startup period. The system should be scalable, tunable, and capable of semi-continuous operation while maintaining food safety and security. The technology will provide high-quality nutrition, decrease logistical burden, reduce the risk of food and water contamination, and provide palatable foodstuffs. The project will be conducted in three phases, starting with a proof-of-concept prototype in Phase I, advancing to an optimized design and full-scale prototype in Phase II, and transitioning to military and commercial applications in Phase III. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the specific branch of the DOD overseeing this topic. The objective is to develop a simple-to-use sample collection and processing method that can accurately detect specific fungal and bacterial species commonly associated with complex battlefield wound infections. The technology should be capable of preparing an adequate specimen for identification and detection in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, leading to delays in treatment and medical intervention decisions. The proposed technology should provide rapid diagnostics with a sample collection-to-result time of less than 2 hours, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and commercialize the technology for both civilian and military settings. The government may propose further harmonization of the technology with other relevant products to meet additional DoD requirements. The solicitation is open until March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the branch responsible for this topic. The objective is to develop a simple-to-use sample collection and processing method capable of preparing an adequate specimen for the identification and accurate detection of specific fungal and/or bacterial species commonly associated with complex battlefield wound infections. The technology should be suitable for use in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, resulting in delays in treatment and medical intervention decisions. The proposed technology should enable rapid diagnosis (less than 2 hours) at the point of injury, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and transition the technology for commercial use in both civilian and military settings. The proposal submission deadline is March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Water Tester at Point of Need
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a water tester at the point of need. The objective of this research topic is to improve water surveillance by developing a rugged and compact field instrument capable of providing microbiological and metal detection capabilities. The goal is to reduce both short- and long-term health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results in less than 4 hours. The equipment must be compact, durable, and able to fit in a carry-on piece of luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use for Special Operations Forces and conventional forces, as well as environmental programs, emergency response teams, and other federal directorates. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation on grants.gov.
    DOD SBIR 24.4 Annual - Medical Payloads for Army Robotic Platforms
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of medical payloads for Army robotic platforms. The objective is to create a modular medical mission payload that can carry heavy, climate-controlled containers to resupply blood and perform casualty evacuation (CASEVAC) with attachability to ground and air robotic/autonomous platforms. Currently, blood delivery, medical resupply, and CASEVAC are conducted by convoys of crewed vehicles, which can be limited in reaching the front line. The goal is to develop a medical multi-mission, modular payload that can be employed by robotic ground and air platforms. The payloads should comply with Safe Ride Standards for casualty evacuation using unmanned aerial vehicles (UAV), Robotics and Autonomous Systems, Ground (RAS-G), and modular payload design standards (Mod Payload). They should also be climate-controlled, collapsible, and capable of maintaining blood temperature between one and 10 degrees centigrade. The proposal should consider cost, and only Direct to Phase II (DP2) proposals will be accepted. The project duration includes Phase I, where a preliminary design of the payload should be formulated, Phase II, where the design is refined and a Technology Readiness Level (TRL) 5-6 system is created, and Phase III, which focuses on commercialization objectives. The solicitation is open until March 31, 2025. For more information, visit the SBIR topic link or the solicitation agency URL.
    DOD SBIR 24.4 Annual - Medical Payloads for Army Robotic Platforms
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of medical payloads for Army robotic platforms. The objective is to create a modular medical mission payload that can carry heavy, climate-controlled containers to resupply blood and perform casualty evacuation (CASEVAC) with attachability to ground and air robotic/autonomous platforms. Currently, blood delivery, medical resupply, and CASEVAC are conducted by crewed vehicles, which can be challenging in reaching the front line. The goal is to develop a medical multi-mission, modular payload that can be employed by robotic ground and air platforms. The payloads should comply with Safe Ride Standards for casualty evacuation using unmanned aerial vehicles (UAV), Robotics and Autonomous Systems, Ground (RAS-G), and modular payload design standards (Mod Payload). They should also be climate-controlled, collapsible, and capable of maintaining blood temperature between one and 10 degrees centigrade. The proposal should consider cost, and only Direct to Phase II (DP2) proposals will be accepted. The Phase II deliverables include refining the preliminary design, creating a Technology Readiness Level (TRL) 5-6 modular medical mission payload, and demonstrating the payload's performance at a vendor-provided, government-approved location. Phase III involves pursuing commercialization objectives, developing a manufacturing-ready product design, and engaging in laboratory or operational testing. The keywords for this solicitation are UAS, UAV, Medical Payloads, Resupply, CASEVAC, and UGV. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov.
    DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The potential impacts of this research include enabling rapid and iterative manufacturing processes for a broad range of military applications. The advanced manufacturing and modular design will be critical to all services where rapid iteration and production are needed. The system could be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page on the Defense SBIR/STTR website.
    DOD SBIR 24.4 Annual - Atmospheric Water Extraction Plus (AWE+)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Atmospheric Water Extraction Plus (AWE+)" as part of its SBIR program. The objective of this solicitation is to develop novel atmospheric water extraction technology with potential for energy use below 100Wh electric per liter of water generated across a wide range of environments. The technology should be integrated into a proof-of-concept prototype producing potable water with a clear path to full-size implementation. The DOD has a critical need to reduce water resupply requirements for mobile and self-sufficient operations. The development of AWE+ technology will have important tactical implications, reducing casualties and costs in forward operating environments. The goal is to provide potable water for a range of military needs by developing low-power, distributable systems that can provide water anywhere, anytime, and without the need for any external liquid water source. DARPA, the Defense Advanced Research Projects Agency, is specifically seeking teams with innovative means of releasing water from sorbents which is cyclically stable and has very low energy requirements. The technology should be able to produce water with not more than 100Wh electricity per liter of water produced, and not more than 100Wh thermal energy per liter of water produced. Proposals should outline a plan for reaching these energy metrics and provide an estimate for the range of environmental conditions at which the devices could operate. The project will be conducted in two phases. Phase I is a six-month effort focusing on proof-of-concept material and release mechanism development. Phase II is a 24-month effort with a base period of nine months, followed by two option periods. The performers will be expected to demonstrate functionality of their water capture and release mechanisms in a laboratory environment, producing at least 100mL of potable liquid water over a six-hour period with minimal loss in performance. The ultimate goal of this effort is to demonstrate AWE capable of meeting potable water needs for expeditionary scenarios with extremely high efficiency. Phase III will focus on transition within the DoD/military and further commercialization of the technology. Potential applications include satisfying military expeditionary water needs, reducing logistical footprint and vulnerability of supply lines, and developing next-generation dehumidification systems for residential and commercial HVAC. Keywords: Atmospheric water extraction, atmospheric water capture, atmospheric water harvesting, sorbent materials, advanced manufacturing. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of the SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The system could have broad military applications where rapid iteration and production are needed, and it may be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page.
    DOD SBIR 24.4 Annual - Ruggedized Additive Mobile Manufacturing Unit (RAMMU)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a Ruggedized Additive Mobile Manufacturing Unit (RAMMU) as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to use additive manufacturing in a deployed environment to decrease downtime for foreign and non-standard weapons parts, motor pool parts, and dental accessories. The RAMMU should be able to print different types of materials, including metal, plastics, polys, and steel, while keeping the container below a 10Klbs threshold. It should be a standalone unit with the ability to connect into forward operating bases' power. The system must be easy to use with plug and play capability and should not rely on WIFI, Bluetooth, or the internet for updates or services. In Phase I, a feasibility study will be conducted to assess the options that satisfy the requirements. The study should investigate all options that meet or exceed the minimum performance parameters and recommend the best option. Phase II involves developing, installing, and demonstrating a prototype system on a deployable platform under challenging conditions. The potential impact of this technology is significant, as it can be used in various military applications to reduce the time required to make weapons operational. The system aims to achieve operational usage within 24 hours of a broken part. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual page on the Defense SBIR/STTR Opportunities website.
    DOD SBIR 24.4 Annual - Large Scale Mobilization Operations Analysis
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Large Scale Mobilization Operations Analysis" as part of their SBIR program. The U.S. Army Reserve (USAR) is looking to identify challenges and create efficiencies in the mobilization process to better support combatant commanders during Large-Scale Combat Operations (LSCO) through Large Scale Mobilization Operations (LSMO). The goal is to enhance the mobilization process, increase overall readiness, and support combatant commanders. The program will also share findings with Army National Guard partners. Proposals can be submitted for both Phase I and Phase II, with Phase II proposals requiring documentation to substantiate scientific and technical merit. The technology has potential applications in supply chain forecasting, weather risk intelligence, and banking and financing. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.