GigEVision-compliant Event-based Cameras
ID: N242-092Type: BOTH
Overview

Topic

GigEVision-compliant Event-based Cameras

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the development of GigEVision-compliant event-based cameras. The objective of this Small Business Innovation Research (SBIR) topic is to create camera interface hardware and software that allows commercial off-the-shelf (COTS) event-based sensors to utilize standard machine vision interfaces such as Ethernet hardware connections and GigEVision or GenICam/GenTL software. Event-based cameras (EBCs) capture transient data objects in a scene and require a unique data stream extraction method. The goal is to develop a new EBC with the necessary hardware and software to connect it to other government imaging and data processing apparatus. The prototype EBC should use COTS sensor components and have a small form factor. The software interface must comply with Motion Imagery Standards Board requirements, operate with low latency, and comply with GigEVision or GenICam/GenTL software standards. The hardware interface should utilize 10 Gigabit Ethernet technology, and the EBC core should leverage COTS event-based sensor components. The project will have a Phase I feasibility study, a Phase II prototype development and evaluation, and a Phase III transition plan. The technology has potential applications in government facilities and could be leveraged by commercial camera producers. The deadline for proposal submission is June 12, 2024. For more information, visit the solicitation link.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Autonomous Optical Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight. The sensor will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities, allowing it to calibrate and manage itself and operate autonomously for an extended period. The sensor will wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated configuration of the Autonomous Optical Sensor (AOS) that includes various types of optical sensors and an AI framework. Phase II will involve creating a prototype of the AOS based on the Phase I analysis, refining the integrated system design, and conducting functional testing in an operational context. The potential applications of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project is currently open for proposals, with a closing date of March 31, 2025. More information can be found on the DOD SBIR website.
DOD SBIR 24.4 Annual - Multilayer Waveguide Optical Gyroscope
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a high-end tactical miniature optical waveguide gyroscope for future U.S. Army missions. The current inertial navigation systems used by the Army are large and expensive, and smaller alternatives such as Micro-Electro-Mechanical (MEMS)-based sensors do not meet the Army's requirements for cost, accuracy, stability, and survivability. The goal is to develop a low-cost and lightweight 6-axis Inertial Measurement Unit (IMU) with high-tactical performance. The desired performance includes a gyro bias stability of 0.2 degrees/hour, scale factor error less than 50 ppm, and angular random walk less than 0.05 degree/root-hour. The gyroscope should also have a high bandwidth, high dynamic range, and low sensitivity to extreme shock and vibration environments. The solicitation focuses on the feasibility of new optical waveguide gyroscope technologies, such as the integrated Silicon waveguide Optical Gyroscope (iSOG). The Phase I of the project involves proving the feasibility of a multi-level waveguide optical sensor coil, while Phase II focuses on designing and delivering a prototype waveguide optical gyroscope. The final phase aims to develop an Inertial Sensor Assembly (ISA) consisting of three gyros and three accelerometers. The technology has potential applications in commercial IMUs and military autonomous modular payloads. The project is open for proposals until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2651325).
DOD SBIR 24.4 Annual - Precision Control Lens Eye Tracking Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of precision contact lens eye tracking sensors for Extended Reality (XR) interaction, training optimization, and cognitive monitoring. The objective is to enhance command and control capabilities in XR environments and enable real-time adaptive systems. Current eye tracking technologies lack the necessary precision and ruggedness for military operations. The proposed contact lens-based eye tracking sensors would allow for operational integration into various dynamic scenarios, including manned and unmanned air operations and ground vehicle systems. The project will involve feasibility studies, the development of a working prototype, and human factors feasibility studies. The technology has potential applications in academic research, health monitoring, and various market applications. The deadline for proposals is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2484455).
DOD SBIR 24.4 Annual - Lightweight AI-enabled image processing for Soldier-borne thermal imagers
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for lightweight AI-enabled image processing for Soldier-borne thermal imagers. The objective of this solicitation is to leverage advances in artificial intelligence and other image processing algorithms to generate higher quality longwave thermal and fused thermal and near-infrared imagery suitable for use on embedded hardware systems for Soldier-borne use. The technology should reduce cognitive burden during long duration missions and improve user acceptance of systems that employ LWIR and NIR sensors. The algorithms should be capable of generating high-quality imagery under various illumination and ambient conditions and provide feedback to the system to adjust camera settings. The proposed processing schema should be capable of running on low size, weight, power, and cost (SWAP-C) embedded hardware. The project will be conducted in three phases: Phase I involves generating a detailed description of the proposed solution, Phase II focuses on completing the image processing pipeline, and Phase III involves instantiating the image pipeline on relevant low SWAP-C embedded hardware. The project duration is from the release date (October 3, 2023) to the close date (March 31, 2025). For more information, visit the [solicitation link](https://www.sbir.gov/node/2651327).
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website [here](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).