Precision Control Lens Eye Tracking Sensors
ID: A244-002Type: BOTH
Overview

Topic

Precision Control Lens Eye Tracking Sensors

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for the development of precision contact lens eye tracking sensors for Extended Reality (XR) interaction, training optimization, and cognitive monitoring. The objective is to enhance command and control capabilities in XR environments and enable real-time adaptive systems. Current eye tracking technologies lack the necessary precision and ruggedness for military operations. The proposed contact lens-based eye tracking sensors would allow for operational integration into various dynamic scenarios, including manned and unmanned air operations and ground vehicle systems. The project will involve feasibility studies, the development of a working prototype, and human factors feasibility studies. The technology has potential applications in academic research, health monitoring, and various market applications. The deadline for proposals is March 31, 2025. For more information, visit the solicitation link.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Precision Control Lens Eye Tracking Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of precision contact lens eye tracking sensors for Extended Reality (XR) interaction, training optimization, and cognitive monitoring. The objective is to enhance command and control capabilities in XR environments, optimize training, and enable real-time adaptive systems. Current eye tracking technologies lack the necessary precision and ruggedness for military operations. The use of contact lens-based eye tracking would allow for operational integration into various dynamic scenarios, including manned and unmanned air operations and ground vehicle systems. The proposed project includes feasibility studies, the development of a working prototype, and human factors feasibility studies. The technology has potential applications in academic research, health monitoring, and various market applications. The project is open for proposals until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Thermal Reflex Sight
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a Thermal Reflex Sight (TRS) for use by Special Operations Forces in short to medium range target engagement scenarios. The TRS should be a weapon mounted capability that combines a long wave infrared thermal weapons sight with a reflex day optic sight, allowing for targeted engagements in varied lighting conditions. The TRS should be optimized for short to medium range engagements and should not be a "shoot from the hip" sight. The objective of Phase I is to conduct a feasibility study to assess the possible options that satisfy the requirements. Phase II involves the development, installation, and demonstration of a prototype system. The resulting system could have applications in various military and law enforcement settings. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Thermal Reflex Sight
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a Thermal Reflex Sight (TRS) for use by Special Operations Forces in short to medium range target engagement scenarios. The TRS should be a weapon mounted capability that combines a long wave infrared thermal weapons sight with a reflex day optic sight, allowing for targeted engagements in varied lighting conditions. The TRS should be optimized for short to medium range engagements and should not be a "shoot from the hip" sight. The objective of Phase I is to conduct a feasibility study to assess the possible options that satisfy the requirements, while Phase II involves developing and demonstrating a prototype system. The resulting system could have applications in various military and law enforcement settings. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Off the Visor Heads Up Display (HUD)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Off the Visor Heads Up Display (HUD)" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop available daylight readable off-the-visor display solutions for use in mixed reality (MR) head mounted display (HMD) systems. The goal is to move on to a Phase 2 applied SBIR where the most optimal off-the-visor solution can be designed, produced, delivered, and characterized for use in future soldier vision products. The technology being solicited would enable the use of low-cost visor optics to complete a display system with performance compatible with the Army's Integrated Visual Augmentation System (IVAS) requirements. It may also provide increased display-image performance, allowing the Warfighter to comfortably view sensor and computer-generated information during long-duration missions while maintaining situational awareness and light security on the battlefield. The optimal product or solution would also provide ergonomic benefits of lower weight and improved center of gravity and achieve affordability objectives consistent with wide-spread system fielding. The solicitation outlines a two-phase approach. Phase I involves researching and defining three viable see-through vision technology configurations. Phase II focuses on prototyping the most ideal see-through vision technology configuration developed in Phase I. The prototype should have the ability to display static imagery or video content to the wearer at a brightness suitable for daytime use and support at least a 30-degree field of view. It should also provide a minimally distorted view of the real world through the visor. The potential impacts and applications of this technology extend beyond military use. There are commercial dual-use potential applications in industries such as workforce and automotive, providing hands-free critical information within complex environments. Examples include manufacturing workers using HUDs to receive instructions or monitor equipment status, automotive applications in vehicles and motorcycle helmets, environmental monitoring in hazardous sites, healthcare applications in operating rooms, and immersive entertainment including gaming and media consumption. The solicitation is currently open, with a close date of March 31, 2025. More information can be found on the grants.gov website (https://www.sbir.gov/node/2496867) or the Defense SBIR/STTR website (https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
    DOD SBIR 24.4 Annual - Digital Projection Close Quarters Sight (DP-CQS)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Digital Projection Close Quarters Sight (DP-CQS)" as part of their SBIR 24.4 Annual program. The objective of this topic is to develop applied research for a compact, close-quarters sight that utilizes a digital screen projected onto a transparent surface for the user to look/aim through. The technology should provide multiple user-selectable and user-configurable ballistic reticles, eliminate mechanical adjustors, and improve system stability under thermal and mechanical shock. The feasibility study should explore options for a 1x direct view optic with at least 3 different digital reticle configurations, low Size Weight and Power (SWaP), and a 72-hour continuous battery run time. The DP-CQS should also communicate with external devices for range/ballistic data and user-configured reticles. The Phase I of the project involves conducting a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications for this technology include military weapon systems and the competitive shooting market. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Off the Visor Heads Up Display (HUD)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Off the Visor Heads Up Display (HUD)" as part of its SBIR program. The objective of this topic is to develop available daylight readable off-the-visor display solutions for use in mixed reality (MR) head mounted display (HMD) systems. The goal is to design, produce, deliver, and characterize the most optimal off-the-visor solution for future soldier vision products. The technology should provide increased display-image performance, allowing the Warfighter to comfortably view sensor and computer-generated information while maintaining situational awareness on the battlefield. The technology should also offer ergonomic benefits such as lower weight and improved center of gravity. The project will involve research and definition of three viable see-through vision technology configurations in Phase I, followed by the production of a single prototype off-the-visor HUD in Phase II. The Phase II prototype should have the ability to display static imagery or video content suitable for daytime use and support at least a 30-degree field of view. The potential dual-use applications of this technology include workforce and automotive industries, manufacturing, automotive applications, environmental monitoring, healthcare, and immersive entertainment. The project duration is not specified, and funding specifics can be found on the grants.gov website. For more information, visit the SBIR topic link: [link].
    DOD SBIR 24.4 Annual - Autonomous Optical Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight. The sensor will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities, allowing it to calibrate and manage itself and operate autonomously for an extended period. The sensor will wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated configuration of the Autonomous Optical Sensor (AOS) that includes various types of optical sensors and an AI framework. Phase II will involve creating a prototype of the AOS based on the Phase I analysis, refining the integrated system design, and conducting functional testing in an operational context. The potential applications of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project is currently open for proposals, with a closing date of March 31, 2025. More information can be found on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Autonomous Optical Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Digital Projection Close Quarters Sight (DP-CQS)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Digital Projection Close Quarters Sight (DP-CQS) as part of the SBIR 24.4 Annual program. The objective of this topic is to develop applied research for a compact, close-quarters sight that utilizes a digital screen projected onto a transparent surface for the user to look/aim through. The DP-CQS should have multiple user-selectable and user-configurable ballistic reticles, eliminate mechanical adjustors, and improve system stability under thermal and mechanical shock. The feasibility study should consider technologies to eliminate light scattering and minimize color shift. The DP-CQS should have a low Size Weight and Power (SWaP) with a 72-hour continuous battery run time. The Phase I of the project involves conducting a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military weapon systems and the competitive shooting market. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.