Ultra-High Voltage Reliability Test System
ID: DMEA241-003Type: BOTH
Overview

Topic

Ultra-High Voltage Reliability Test System

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for an Ultra-High Voltage Reliability Test System. The objective is to develop a package-level reliability test system capable of conducting various tests for wide bandgap semiconductor devices with a blocking voltage up to 40kV. The proposed system should integrate power supplies, measurement hardware, and control software into one cohesive system and be capable of testing 80 devices simultaneously. The system should provide temperature control from 25C to 200C and relative humidity control from 15% to 85%. The project will be conducted in three phases: feasibility study, prototype development and testing, and delivery of a fully developed pre-production test system. The Phase I feasibility study should address voltage, temperature, humidity, package adaptability, control software, modular design, and safety requirements. Phase II will involve developing a fully functional prototype and conducting rigorous testing. Phase III will focus on delivering a verified pre-production test system and seeking regulatory certification for commercialization. The project is restricted under ITAR regulations.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - YTC Full Load Cooling
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "YTC Full Load Cooling" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop modernized data processing techniques to accurately assess the cooling capabilities of military vehicles with electronically controlled powertrains. The current testing methodologies and data processing techniques for fluid temperature data in critical systems of military vehicles are outdated and cannot be used for assessing vehicles with electronically controlled transmissions. The goal is to modernize the test methodology and utilize synthetic data generation techniques to accurately characterize the performance of the vehicle, even in extreme environments. The research will involve developing a new Full Load Cooling (FLC) test methodology, mathematical formulae for data processing, and a methodology to characterize powertrain derating. The project will be conducted in two phases, with Phase I focusing on developing the initial plan and Phase II refining the methodology and developing a software program for data processing. The research has potential applications in the automotive industry and can contribute to the development of modeling and simulation capabilities for engine and energy cooling. The project duration is from 4QFY24 to 3QFY26, and interested parties can find more information and submit proposals on the DOD SBIR website.
DOD SBIR 24.4 Annual - High Power and Torque Electric Motors for Direct-Drive Rotorcraft Applications
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of high power and torque electric motors for direct-drive rotorcraft applications. The objective is to identify and design an electric motor architecture that can provide high power and torque output at low rotational speeds suitable for rotorcraft applications. The proposed motor should be capable of delivering power in the range of 400-700+ horsepower at rotational speeds of 250-400 RPM, with torque ranging from 5,000-15,000+ ft-lb. The motor should also exhibit high torque densities in both continuous and short-term hover operations. The development of such motors is crucial for the advancement of electric aviation and would have immediate applications in light rotary-wing designs, eVTOL unmanned aircraft systems (UAS), and logistics operations. The project will involve a phased approach, starting with a feasibility analysis and conceptual design in Phase I, followed by detailed design and prototype development in Phase II. Phase III will focus on the integration and testing of the motor in a relevant aerospace application. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website.
DOD SBIR 24.4 Annual - Tactical Micro-grid Standard Add-on for Power Sources
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Tactical Micro-grid Standard Add-on for Power Sources" as part of their SBIR 24.4 Annual solicitation. The goal of this research is to address the need for reliable and flexible power solutions in dynamic and unpredictable environments, including directed energy. The objective is to enable the seamless integration of diverse power sources, such as renewable energy, generators, and storage systems, into a cohesive network. This would create resilient, self-sustaining power infrastructure capable of providing uninterrupted energy supply, enhancing operational efficiency, and reducing reliance on vulnerable external grids. The solicitation is open for Phase I proposals with a budget of up to $250,000 for a 6-month period of performance. Phase I involves analyzing the current state of power infrastructure, conceptualizing the design, and developing a feasibility study. Phase II will focus on building a fully functional prototype. The potential applications of this technology include urban and critical infrastructure, remote/rural communities, electric vehicles, autonomous vehicles, and data centers. The implementation of the Tactical Micro-grid Standard has the potential to establish a modular, efficient, and more effective smart power microgrid.
DOD SBIR 24.4 Annual - Water Tester at Point of Need
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a water tester at the point of need. The objective of this solicitation is to develop applied research for an innovative capability to improve water surveillance in field conditions. The goal is to create a rugged and compact field instrument that can provide microbiological and metal detection capabilities to reduce health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results within 4 hours. The equipment must be compact, durable, and able to fit in carry-on luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, and Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use, environmental programs, emergency response teams, and other federal directorates. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link: [here](https://www.sbir.gov/node/2484467).
DOD SBIR 24.4 Annual - Solid-State Scalable/Tileable Imaging Detector for High-Energy Neutron Radiography
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a solid-state scalable/tileable imaging detector for high-energy neutron radiography. The objective is to deliver a state-of-the-art high-energy neutron radiography imaging/detector. The technology will be used in conjunction with a source of high-energy neutrons to achieve a state-of-the-art neutron radiography system. The project will consist of three phases. In Phase I, the proposer must prove the principle through a white paper study that demonstrates strong evidence that a solid-state neutron detector can be designed and constructed on a chip. In Phase II, the proposer will build and deliver a tiled detector with minimum dimensions of 11" square that is effective for 1 MeV neutrons. The detector should provide short acquisition imaging times, high contrast, high spatial resolution, and high signal-to-noise ratio. In Phase III, the proposer will explore dual-use applications of the technology. Potential applications include accurate and fast inspections of Army ammunition, armaments, and other products for quality, safety, and lethality. The technology could also be used for compact, lightweight, self-contained scalable detectors in the detection of materials that emit gamma/beta rays or sub-atomic particles, such as radioactive isotopes, contamination, and special nuclear material. Commercial applications could include ground stationary check points, aerial applications, and underground/underwater drilling/mining applications. The project duration is not specified, but the proposal submission deadline is March 31, 2025. More information can be found on the DOD SBIR website (https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).