Low-Cost, High-Power Microwave Switches for Radar and Electronic Warfare (EW) Applications
ID: N242-090Type: BOTH
Overview

Topic

Low-Cost, High-Power Microwave Switches for Radar and Electronic Warfare (EW) Applications

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for a research topic titled "Low-Cost, High-Power Microwave Switches for Radar and Electronic Warfare (EW) Applications" under the SBIR program. The Navy branch is specifically interested in this topic. The objective is to design, optimize, and fabricate prototypes for a low-cost, low-loss, high-power microwave switch with fast-switching speeds over large instantaneous bandwidths. The switch should be suitable for radio frequency (RF) surveillance and EW applications. The Navy is looking for novel methods to produce low-cost, high-power microwave switches that improve power handling, tuning speed, efficiency, and linearity while reducing unit cost. The proposed switch should operate within the frequency range of 2-12 GHz (threshold) or 2-18 GHz (objective) and meet specific performance metrics for power handling, insertion loss, isolation, switching speed, cycles, linearity, and duty cycle. The Phase I of the project involves developing a preliminary design and simulated results of the switch, while Phase II focuses on producing prototypes and conducting laboratory-based testing. The Phase III aims to design and deliver higher-level subassemblies incorporating the new switching technology for both DoD and commercial applications. The project duration and funding specifics can be found in the solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Software Defined RadioHead (SDRH)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Software Defined RadioHead (SDRH)" as part of their SBIR 24.4 Annual solicitation. The objective is to develop a radio agnostic SDRH system that can rapidly adapt the radio carrier frequency among diverse targeted frequency bands using analog and/or digital frequency conversion. This technology will provide additional flexibility to the commander's communication plan. The SDRH design will be a flexible antenna prototype capable of supporting multiple frequencies and radio modules, complementing the C5ISR/CMOSS standard's objective for agnostic hardware. The solicitation is open for Direct to Phase II (DP2) proposals with a maximum cost of $2,000,000 for a 12-month period of performance. Phase II will involve developing a prototype SDRH for evaluation and testing by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center. The solicitation also highlights potential dual-use applications of SDRH technology in industries such as IoT, UAVs, smart cities, and mobile communications. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2638119) or the [DOD SBIR/STTR Opportunities](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/) website.
DOD SBIR 24.4 Annual - Low Cost Persistent Multi Sensor Surveillance
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Low Cost Persistent Multi Sensor Surveillance" as part of their SBIR program. The objective of this topic is to develop environmentally hardened sensor nodes that can persistently monitor Radio Frequency (RF), weather conditions, and/or personnel access of remote islands leased on the Kwajalein Atoll for the U.S. Army's Reagan Test Site (RTS). The solutions should be independent of external power sources or communications networks, as there are no cellular or Wi-Fi communications, nor power source, in these areas. The solutions must also be capable of operating in harsh environmental conditions, including heat, humidity, regular rainfall, salt spray, and high atmospheric salinity. The data collected by these sensor nodes will be used for situational awareness, safety, security, and mission planning and support. The solicitation is open for both full or partial solutions, and Phase I proposals with a cost of up to $250,000 for a 6-month period of performance are being accepted. Phase I will involve researching and developing the system/network architecture, designing the hardware components, and proposing power source designs and networking techniques. By the end of Phase I, the awardee should have detailed descriptions of the proposed technologies. In Phase II, the awardee will produce a single prototype that demonstrates the capabilities and methodologies at a minimum of TRL4. They will also develop a user interface and display for situational awareness of sensor control and monitoring. The potential applications of this technology include wireless remote sensing for public safety, health, fitness, and wildlife dual-usages. Some examples of dual uses of remote sensing include anti-poaching efforts, remote environmental sensors enabled by low-Earth orbit satellites, wildfire early recognition sensor systems, agriculture and crop performance monitoring, and urban pollution source detection. For more information and to submit proposals, interested parties can visit the DOD SBIR program website. The solicitation is currently open, and the application due date is March 31, 2025. References: - https://www.sciencedirect.com/science/article/abs/pii/S0927775722021823 - https://www.sciencedirect.com/science/article/pii/S1877050914009831 - http://www.ijpe-online.com/EN/10.23940/ijpe.09.5.p419.mag Keywords: sensors, nodes, Radio Frequency (RF), Reagan Test Site (RTS)
DOD SBIR 24.4 Annual - Tactical Micro-grid Standard Add-on for Power Sources
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Tactical Micro-grid Standard Add-on for Power Sources" as part of their SBIR 24.4 Annual solicitation. The goal of this research is to address the need for reliable and flexible power solutions in dynamic and unpredictable environments, including directed energy. The objective is to enable the seamless integration of diverse power sources, such as renewable energy, generators, and storage systems, into a cohesive network. This would create resilient, self-sustaining power infrastructure capable of providing uninterrupted energy supply, enhancing operational efficiency, and reducing reliance on vulnerable external grids. The solicitation is open for Phase I proposals with a budget of up to $250,000 for a 6-month period of performance. Phase I involves analyzing the current state of power infrastructure, conceptualizing the design, and developing a feasibility study. Phase II will focus on building a fully functional prototype. The potential applications of this technology include urban and critical infrastructure, remote/rural communities, electric vehicles, autonomous vehicles, and data centers. The implementation of the Tactical Micro-grid Standard has the potential to establish a modular, efficient, and more effective smart power microgrid.
DOD SBIR 24.4 Annual - High-Power Single Mode Diode Bars
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "High-Power Single Mode Diode Bars" as part of their SBIR 24.4 Annual solicitation. The Army branch is specifically interested in this topic. The objective is to develop a diode bar with multi-watt power output per emitter while maintaining single mode operation when coupled to an external wavelength beam combiner. This technology aims to enable power scaling in direct diode high energy lasers (HELs) with improved efficiency. The Army is looking for diode bars with 5W-10W per emitter and >45% efficiency at 9xxnm-10xxnm wavelength. The solicitation is currently open, and Phase I proposals are being accepted with a budget of up to $250,000 for a 6-month period. During Phase I, the government and industry will collaborate to refine the objectives and design of the emitter, supported by modeling, simulation, experimentation, and analysis. Phase II will involve completing a prototype design for production and delivering a demonstration device for testing against threshold specifications. In Phase III, the technology has potential dual-use applications in sensing, communications, and directed high energy fields. Single-mode diode bars can be used in LiDAR, fiber optic communications, manufacturing, medical procedures, cosmetics, and printing. For more information and to submit a proposal, visit the DOD SBIR website: [link](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/). The application due date is March 31, 2025.