Robotic Leak Repair for Cyclotron Vacuum Systems
ID: DMEA241-001Type: BOTH
Overview

Topic

Robotic Leak Repair for Cyclotron Vacuum Systems

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic of "Robotic Leak Repair for Cyclotron Vacuum Systems" as part of their SBIR 24.1 BAA solicitation. The objective is to develop a robotic system capable of locating and repairing leaks in high-vacuum systems of cyclotrons and similar particle accelerators. These facilities play a crucial role in enabling microelectronics in hostile radiation environments, but maintenance issues, particularly leaks in the vacuum systems, pose challenges. The proposed robotic system should be able to operate in the radiation environment, navigate small dimensions, locate and image leaks, perform lasting repairs, and self-extract without leaving debris or trace gasses. Key parameters include the ability to tolerate bends, traverse minimum diameters, and detect leaks accurately. The project will be conducted in multiple phases, starting with a feasibility study and culminating in the development and testing of a fully functional prototype. The potential impacts of this technology extend beyond defense applications, with potential applications in medical, scientific, and various industries that rely on high-vacuum systems.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Multisystem Mobile Corrosion Unit
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a research topic titled "Multisystem Mobile Corrosion Unit" as part of their SBIR program. The objective of this topic is to develop a deployable solution for the Army's major corrosion issue, allowing for repairs in austere environments while in the field. The solution should include capabilities such as laser ablation, corrosion preventative coating application, cold spray, plasma blast, welding, and more. The project will consist of two phases, with Phase I accepting proposals for up to $250,000 for a 6-month period to develop a proof-of-concept prototype. Phase II will involve developing a deployment-ready multisystem corrosion unit. The technology has potential applications in industries such as automotive, aircraft, construction, agriculture, and power and energy. The project duration is not specified, and interested parties can find more information and submit proposals on the DOD SBIR website.
DOD SBIR 24.4 Annual - Small Unmanned Ground Robotic Systems
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a cyber-hardened small unmanned ground robotic system. The system should be capable of being operated using both a vendor-developed .apk TAK GOV software controller and a Tomahawk Robotics Grip S20 universal controller. It should integrate the best C2/data link components and be operable with Silvus Technologies and Persistent Systems radios. The system should be designed for intelligence, surveillance, and reconnaissance (ISR) purposes and be able to operate in all-weather conditions within rural and urban environments. The system should have a minimum battery life of 60-90 minutes and a ground control station line-of-sight range capability of 100 meters. The integrated sensors should be able to identify moving armed personnel at specified distances. The system should also have cyber survivability attributes and be capable of carrying various payloads. The Phase I of the project involves conducting a feasibility study to assess the options that satisfy the requirements. The Phase II includes developing, installing, and demonstrating a prototype system. The system has potential applications in a broad range of military operations, enhancing operational situational awareness, reducing cognitive and physical workload, and reducing risk to the user. The project is open for proposals until March 31, 2025. For more information, visit the [solicitation link](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Medical Payloads for Army Robotic Platforms
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of medical payloads for Army robotic platforms. The objective is to create a modular medical mission payload that can carry heavy, climate-controlled containers to resupply blood and perform casualty evacuation (CASEVAC) with attachability to ground and air robotic/autonomous platforms. Currently, blood delivery, medical resupply, and CASEVAC are conducted by convoys of crewed vehicles, which can be limited in reaching the front line. The goal is to develop a medical multi-mission, modular payload that can be employed by robotic ground and air platforms. The payloads should comply with Safe Ride Standards for casualty evacuation using unmanned aerial vehicles (UAV), Robotics and Autonomous Systems, Ground (RAS-G), and modular payload design standards (Mod Payload). They should also be climate-controlled, collapsible, and capable of maintaining blood temperature between one and 10 degrees centigrade. The proposal should consider cost, and only Direct to Phase II (DP2) proposals will be accepted. The project duration includes Phase I, where a preliminary design of the payload should be formulated, Phase II, where the design is refined and a Technology Readiness Level (TRL) 5-6 system is created, and Phase III, which focuses on commercialization objectives. The solicitation is open until March 31, 2025. For more information, visit the [SBIR topic link](https://www.sbir.gov/node/2484469) or the [solicitation agency URL](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Small Unmanned Ground Robotic Systems
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a cyber-hardened small unmanned ground robotic system. The system should be capable of being operated using both a vendor-developed .apk TAK GOV software controller and a Tomahawk Robotics Grip S20 universal controller. It should integrate the best C2/data link components and be operable with Silvus Technologies and Persistent Systems radios. The system should be designed for intelligence, surveillance, and reconnaissance (ISR) purposes and be able to operate in all-weather conditions within rural and urban environments. The system should have a minimum operating time of 60 minutes for smaller systems and 90 minutes for larger systems, with a ground control station line-of-sight range capability of 100 meters. The integrated sensors should be able to identify moving armed personnel at specified distances. The system should also have cyber survivability attributes and be capable of carrying various payloads. The feasibility study for Phase I should investigate all options that meet or exceed the minimum performance parameters. Phase II involves developing and demonstrating a prototype system, and Phase III focuses on dual-use applications in military settings. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Solid-State Scalable/Tileable Imaging Detector for High-Energy Neutron Radiography
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a solid-state scalable/tileable imaging detector for high-energy neutron radiography. The objective is to deliver a state-of-the-art high-energy neutron radiography imaging/detector. The technology will be used in conjunction with a source of high-energy neutrons to achieve a state-of-the-art neutron radiography system. The project will consist of three phases. In Phase I, the proposer must prove the principle through a white paper study that demonstrates strong evidence that a solid-state neutron detector can be designed and constructed on a chip. In Phase II, the proposer will build and deliver a tiled detector with minimum dimensions of 11" square that is effective for 1 MeV neutrons. The detector should provide short acquisition imaging times, high contrast, high spatial resolution, and high signal-to-noise ratio. In Phase III, the proposer will explore dual-use applications of the technology. Potential applications include accurate and fast inspections of Army ammunition, armaments, and other products for quality, safety, and lethality. The technology could also be used for compact, lightweight, self-contained scalable detectors in the detection of materials that emit gamma/beta rays or sub-atomic particles, such as radioactive isotopes, contamination, and special nuclear material. Commercial applications could include ground stationary check points, aerial applications, and underground/underwater drilling/mining applications. The project duration is not specified, but the proposal submission deadline is March 31, 2025. More information can be found on the DOD SBIR website (https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).