Frost Icephobic Coating for Subfreezing Environmental Control Systems (ECS) Components
ID: N241-016Type: BOTH
Overview

Topic

Frost Icephobic Coating for Subfreezing Environmental Control Systems (ECS) Components

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the development of a frost icephobic coating for subfreezing Environmental Control Systems (ECS) components. The objective is to develop a coating that mitigates frost formation on downstream heat exchangers inside an ECS environment for extended periods of time with minimal maintenance required. The coating should prevent condensed droplets from freezing into ice and reduce frost thickness. The technology will have applications in advanced military fighter aircraft and potentially future commercial aircraft ECS. The project will involve a feasibility demonstration in Phase I, full development and analysis in Phase II, and production of a final coating in Phase III. The funding specifics and project duration can be found in the solicitation notice on grants.gov or the DOD SBIR/STTR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - YTC Full Load Cooling
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "YTC Full Load Cooling" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop modernized data processing techniques to accurately assess the cooling capabilities of military vehicles with electronically controlled powertrains. The current testing methodologies and data processing techniques for fluid temperature data in critical systems of military vehicles are outdated and cannot be used for assessing vehicles with electronically controlled transmissions. The goal is to modernize the test methodology and utilize synthetic data generation techniques to accurately characterize the performance of the vehicle, even in extreme environments. The Phase I of the project will involve an initial site visit, development of a new Full Load Cooling (FLC) test methodology, characterization of powertrain derating, and submission of a final report. Phase II will focus on refining the FLC test methodology, developing a software program and Graphical User Interface (GUI) for synthetic data generation, and creating a test plan for field conditions. The potential impacts of this research include improved testing and assessment of military vehicles' cooling system performance, better understanding of powertrain derating, and the development of advanced data processing techniques. The research will leverage commercial industry data and expertise on electronically controlled powertrains and can have applications in modeling and simulation capabilities for engine and energy cooling, as well as in the manufacturing process for cooling systems and powertrains. The project duration is from 4QFY24 to 3QFY26, and interested parties can find more information and submit proposals on the DOD SBIR website.
DOD SBIR 24.4 Annual - YTC Full Load Cooling
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "YTC Full Load Cooling" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop modernized data processing techniques to accurately assess the cooling capabilities of military vehicles with electronically controlled powertrains. The current testing methodologies and data processing techniques for fluid temperature data in critical systems of military vehicles are outdated and cannot be used for assessing vehicles with electronically controlled transmissions. The goal is to modernize the test methodology and utilize synthetic data generation techniques to accurately characterize the performance of the vehicle, even in extreme environments. The research will involve developing a new Full Load Cooling (FLC) test methodology, mathematical formulae for data processing, and a methodology to characterize powertrain derating. The project will be conducted in two phases, with Phase I focusing on developing the initial plan and Phase II refining the methodology and developing a software program for data processing. The research has potential applications in the automotive industry and can contribute to the development of modeling and simulation capabilities for engine and energy cooling. The project duration is from 4QFY24 to 3QFY26, and interested parties can find more information and submit proposals on the DOD SBIR website.
DOD SBIR 24.4 Annual - Electromagnetic Protection Coating for Artillery Projectiles
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of an Electromagnetic Protection Coating for Artillery Projectiles. The Army is looking for innovative solutions to integrate electromagnetic protection materials onto extended range artillery rounds. The proposed solutions must be able to withstand artillery gun launch loads, conform to the projectile's geometry, and perform at elevated skin temperatures caused by aerodynamic heating. The Phase I contract will involve research into ULTCC formulations or other electromagnetic materials that can operate in environments up to 650°C. Phase II will focus on fabricating material samples for mechanical properties testing and sintering them onto metal alloy substrates. Phase III will involve large-scale production and the fabrication of prototypes that can withstand shock loads up to 30,000 G's. The proposer will work with an Army prime or industry transition partner to fully develop and integrate the design onto the target platform. The technology falls under the Advanced Materials critical technology area and is restricted under export control laws. The solicitation is open until March 31, 2025. For more information, visit the [SBIR topic link](https://www.sbir.gov/node/2651307) or the [solicitation agency website](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Atmospheric Water Extraction Plus (AWE+)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Atmospheric Water Extraction Plus (AWE+)" as part of its SBIR program. The objective of this solicitation is to develop novel atmospheric water extraction technology with potential for energy use below 100Wh electric per liter of water generated across a wide range of environments. The technology should be integrated into a proof-of-concept prototype producing potable water with a clear path to full-size implementation. The DOD has a critical need to reduce water resupply requirements for mobile and self-sufficient operations. The development of AWE+ technology will have important tactical implications, reducing casualties and costs in forward operating environments. The goal is to provide potable water for a range of military needs by developing low-power, distributable systems that can provide water anywhere, anytime, and without the need for any external liquid water source. DARPA, the Defense Advanced Research Projects Agency, is specifically seeking teams with innovative means of releasing water from sorbents which is cyclically stable and has very low energy requirements. The technology should be able to produce water with not more than 100Wh electricity per liter of water produced, and not more than 100Wh thermal energy per liter of water produced. Proposals should outline a plan for reaching these energy metrics and provide an estimate for the range of environmental conditions at which the devices could operate. The project will be conducted in two phases. Phase I is a six-month effort focusing on proof-of-concept material and release mechanism development. Phase II is a 24-month effort with a base period of nine months, followed by two option periods. The performers will be expected to demonstrate functionality of their water capture and release mechanisms in a laboratory environment, producing at least 100mL of potable liquid water over a six-hour period with minimal loss in performance. The ultimate goal of this effort is to demonstrate AWE capable of meeting potable water needs for expeditionary scenarios with extremely high efficiency. Phase III will focus on transition within the DoD/military and further commercialization of the technology. Potential applications include satisfying military expeditionary water needs, reducing logistical footprint and vulnerability of supply lines, and developing next-generation dehumidification systems for residential and commercial HVAC. Keywords: Atmospheric water extraction, atmospheric water capture, atmospheric water harvesting, sorbent materials, advanced manufacturing. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
DOD SBIR 24.4 Annual - Thermal Barrier Minimal Deflection Handguard
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a research topic titled "Thermal Barrier Minimal Deflection Handguard" under the SBIR program. The research aims to investigate the thermodynamics involved in designing an over-the-suppressor handguard and developing a toolless mounting system. The handguard should have a high thermal conductivity to allow rapid fire while maintaining a surface temperature below discomfort levels. The research should also focus on heat dissipation, insulation, materials, weight, and ergonomics of the handguard. The objective is to develop a handguard that can withstand high temperatures without decomposing or releasing toxic chemicals. Additionally, a toolless mounting system is required for easy removal and maintenance of the piston system. The handguard should remain rigid and return to within ≤ 0.5 milliradians of mounting center when force is applied and removed by the shooter. The proposed handguard should be between 9 and 11 inches in length. The Phase I of the project involves conducting a feasibility study to assess the possibilities that meet the specified requirements. The Phase II focuses on developing, installing, and demonstrating a prototype system. The technology developed through this research can have applications in various military small arms weapons where user interface of a handguard and heat mitigation is a concern. The project has a funding duration until March 31, 2025. For more details and to submit proposals, visit the solicitation agency's website at [solicitation_agency_url].