Infrared Window/Dome Refurbishment and Repair
ID: N242-074Type: BOTH
Overview

Topic

Infrared Window/Dome Refurbishment and Repair

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic of "Infrared Window/Dome Refurbishment and Repair" under the SBIR program. The objective is to design and develop methods to refurbish and repair damaged infrared (IR) sensor or missile seeker system windows and domes. These windows and domes are exposed to various degraders in their operational environments, leading to surface damage and degraded optical quality. The goal is to restore the damaged windows and domes to their pristine optical and physical condition.

The solicitation is open to innovative sources and methods for the repair/refurbishment of sapphire, Germanium (Ge), and Silicon (Si) IR windows and domes. The project aims to achieve a final per-unit refurbishment cost not exceeding $30,000 and a project duration of 3 months for flat sapphire windows up to 10 inches in diameter and hemispheric Ge domes up to 9 inches in diameter. The proposed methods should address challenges such as thermal and mechanical stress, separation of repair layers, and impacts to optical performance.

The project will be conducted in three phases. Phase I involves designing and demonstrating the feasibility of novel approaches to repair/refurbish single-boule-grown IR optical windows and domes. Phase II focuses on optimizing the processes developed in Phase I and restoring a scratched, eroded, partially-coated sapphire flat to its original optical quality, strength, and thickness. Phase III involves demonstrating the repair/refurbishment of damaged optical windows or domes provided as government-furnished equipment.

The ability to repair/refurbish optical-grade windows and domes could have a significant impact on various industries, such as grocery store infrastructure suppliers and laboratory-grade sensors, cameras, and laser optics. The solicitation is open until June 12, 2024, and more details can be found on the grants.gov website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
DOD SBIR 24.4 Annual - Off the Visor Heads Up Display (HUD)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Off the Visor Heads Up Display (HUD)" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop available daylight readable off-the-visor display solutions for use in mixed reality (MR) head mounted display (HMD) systems. The goal is to move on to a Phase 2 applied SBIR where the most optimal off-the-visor solution can be designed, produced, delivered, and characterized for use in future soldier vision products. The technology being solicited would enable the use of low-cost visor optics to complete a display system with performance compatible with the Army's Integrated Visual Augmentation System (IVAS) requirements. It may also provide increased display-image performance, allowing the Warfighter to comfortably view sensor and computer-generated information during long-duration missions while maintaining situational awareness and light security on the battlefield. The optimal product or solution would also provide ergonomic benefits of lower weight and improved center of gravity and achieve affordability objectives consistent with wide-spread system fielding. The solicitation outlines a two-phase approach. Phase I involves researching and defining three viable see-through vision technology configurations. Phase II focuses on prototyping the most ideal see-through vision technology configuration developed in Phase I. The prototype should have the ability to display static imagery or video content to the wearer at a brightness suitable for daytime use and support at least a 30-degree field of view. It should also provide a minimally distorted view of the real world through the visor. The potential impacts and applications of this technology extend beyond military use. There are commercial dual-use potential applications in industries such as workforce and automotive, providing hands-free critical information within complex environments. Examples include manufacturing workers using HUDs to receive instructions or monitor equipment status, automotive applications in vehicles and motorcycle helmets, environmental monitoring in hazardous sites, healthcare applications in operating rooms, and immersive entertainment including gaming and media consumption. The solicitation is currently open, with a close date of March 31, 2025. More information can be found on the grants.gov website (https://www.sbir.gov/node/2496867) or the Defense SBIR/STTR website (https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website [here](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Low-cost Longwave Bolometer Camera Fabrication Techniques
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Low-cost Longwave Bolometer Camera Fabrication Techniques" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop novel technologies and fabrication techniques to reduce the cost of sensor payloads based on resistive microbolometer technology. The focus is on reducing the unit cost of the focal plane array and supporting a low-cost sensor. The solutions should be ready to transition into a camera module development effort by the end of Phase II. The solicitation emphasizes the importance of thermal longwave infrared (LWIR) capabilities in various Army applications and the need for a thermal sensor payload with high-definition array and dramatically reduced unit price. The solutions can involve novel manufacturing techniques, new materials systems, innovative component or module designs, or other approaches. Direct to Phase II contracts will focus on demonstrating enabling developments, and Phase II sequential efforts will deliver a prototype payload meeting the specified requirements for evaluation by Army Unmanned Aircraft Systems (UAS) or other programs. Phase I of the solicitation is only accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for an 18-month period of performance. DP2 proposals are highly encouraged if they meet the requirements. Proposals should demonstrate the estimated cost reduction compared to products made with current fabrication techniques and discuss the impact on size, weight, and power of a complete camera module. Initial ideas on potential paths for integration into a production camera module should also be discussed. Phase II involves designing and fabricating a prototype device that demonstrates the proposed solution to reduce thermal sensor payload unit cost. The impact of the solution on the unit price of a final sensor payload and its incorporation into such a payload should be discussed. Relevant interfaces should be defined and documented, and potential partnerships with integrators or other companies for follow-on efforts should be considered. In Phase III, the solicitation highlights the potential dual-use applications of leveraging bolometer manufacturing methods for low-cost long wave infrared (LWIR) sensors. These applications include smartphone camera augmentation, UAV camera augmentation (specifically via the Office of Naval Research), home security systems, and climate tech via quantum dot (QD) development. Overall, this solicitation seeks innovative solutions to reduce the cost of thermal sensor payloads based on resistive microbolometer technology, with potential applications in various military and commercial sectors.
DOD SBIR 24.4 Annual - Autonomous Optical Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.