Unmanned Aerial System for Tag Deployment in Marine Mammal Monitoring
ID: N242-097Type: BOTH
Overview

Topic

Unmanned Aerial System for Tag Deployment in Marine Mammal Monitoring

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic "Unmanned Aerial System for Tag Deployment in Marine Mammal Monitoring" as part of their SBIR 24.2 Annual solicitation. The objective of this topic is to develop a compact, commercial-off-the-shelf (COTS) unmanned aerial system (UAS) and payloads to accurately deploy Type A anchored biologging tags from small boats for marine mammal monitoring. The use of UAS in tag deployment can reduce risks and increase deployment rates. The Phase I of the project involves developing concepts and feasibility, while Phase II focuses on developing prototype payloads and technology hardware. Successful adaptation of the UAS and payload will have applications in marine mammal monitoring for various government agencies. The project duration and funding specifics can be found in the solicitation notice on grants.gov or the DOD SBIR/STTR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)" as part of the SBIR program. The Navy is specifically interested in developing next-generation autonomy that will increase the capability and scope of utility of UMVs while decreasing the level of remote human operator involvement. The goal is to enable UMVs to perform complex tasks with little to no human intervention, handle dynamic and harsh maritime environments, support diverse missions and tasks, and cooperate autonomously with other UMVs. The technology should operate with low-bandwidth and intermittent communication and be robust to uncertain and inaccurate perception information. The project will involve the development of algorithms and software, simulation-based testing, and in-water testing with physical-small scale models. The Phase II period of performance is anticipated to be four years. Successful completion of the project could lead to the transition of the Next-generation Autonomy software to the acquisition program for use within its architecture.
DOD SBIR 24.4 Annual - Handheld Kinetic Defeat of UAS
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a handheld defeat capability to counter Unmanned/Uncrewed Aircraft Systems (UAS) in their SBIR 24.4 Annual solicitation. The objective is to develop low size, weight, power, and cost (SWaP-C) solutions that can kinetically defeat Group 1-3 UAS with a high probability of kill (Pk). The solicitation prioritizes characteristics such as Pk, SWaP-C, reliability, ease of use, versatility, and defeat range. The Phase I of the project involves conducting a feasibility study to assess the possibilities that satisfy the specified requirements. The Phase II focuses on developing, installing, and demonstrating a prototype system for a handheld UAS defeat solution. The technology developed through this program could have broad applications in various military scenarios where defense against UAS is required. The solicitation is open until March 31, 2025, and more details can be found on the DOD SBIR website.
DOD SBIR 24.4 Annual - Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)" as part of the SBIR program. The Navy is specifically interested in developing next-generation autonomy that will increase the capability and scope of utility of UMVs while decreasing the level of remote human operator involvement. UMVs refer to both Unmanned Surface Vehicles (USVs) and Unmanned Underwater Vehicles (UUVs). The goal is to advance the state of the art in UMV autonomy by enabling UMVs to perform complex tasks with little to no human intervention, handle dynamic and harsh maritime environments, support diverse missions and tasks, and cooperate autonomously with other UMVs. The proposed autonomy should operate with low-bandwidth and intermittent communication and be robust to uncertain and inaccurate perception information. The project will consist of a Phase I-type effort to develop a workable prototype or design, followed by a Phase II effort to develop, demonstrate, and validate the next-generation autonomy software. The Phase II period of performance is anticipated to be four years. Successful completion of the project is expected to transition the Next-generation Autonomy software to the acquisition program for use within its Unmanned Maritime Autonomy Architecture (UMAA) in USV programs.
DOD SBIR 24.4 Annual - Miniaturization of Hyperspectral Sensors for UAS Applications
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Miniaturization of Hyperspectral Sensors for UAS Applications" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop a compact, passive, day/night capable hyperspectral sensor that meets Size, Weight, and Power (SWaP) requirements for integration into ongoing modernization programs. The sensor should result in cost savings and reductions in weight, power, and volume without sacrificing capability. The sensor payload will be developed for use on smaller Unmanned Aerial Systems (UASs). Historically, airborne hyperspectral imaging (HSI) systems have been limited to larger aircraft due to heavy and complex optical components, high power consumption, and large ancillary hardware. This limits accessibility and availability. The solicitation is accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for a 24-month period of performance. Proposers interested in submitting a DP2 proposal must provide documentation to substantiate the scientific and technical merit and feasibility equivalent to a Phase I project. During Phase II, firms should complete the sensor design, fabricate and test the component, integrate it into a gimbal for final integration onto a Class II or smaller UAS platform, refine the design as necessary, and validate sensor payload performance in a government-run laboratory. They should also define relevant interfaces for integration and lay out a high-level plan for how the component could be integrated into a UAS platform. In Phase III, the sensor/gimbal payload should be integrated into a prototype system for field collection. The sensor should be deployed on at least one test event to observe performance and generate quantitative/qualitative sensor performance data. The topic references relevant research papers on hyperspectral imaging systems. The keywords for this topic are Hyperspectral, VNIR, SWIR, and LWIR. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation page on grants.gov: [link](https://www.sbir.gov/node/2638123).
DOD SBIR 24.4 Annual - Handheld Kinetic Defeat of UAS
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a handheld defeat capability to counter Unmanned/Uncrewed Aircraft Systems (UAS) in their SBIR 24.4 Annual solicitation. The objective is to create low size, weight, power, and cost (SWaP-C) solutions that can kinetically defeat Group 1-3 UAS with a focus on reliability and a high probability of kill (Pk). The solicitation emphasizes the importance of defeat range, ease of use, versatility, and the ability to defeat multiple group sizes and types of UAS. The Phase I of the project requires a feasibility study to assess potential methodologies and technologies that meet the specified requirements. The study should address risks and potential payoffs and recommend the most feasible option. Phase II involves the development, installation, and demonstration of a prototype system based on the findings of the feasibility study. The resulting handheld UAS defeat system could have broad applications in various military scenarios where defense against UAS is required. The solicitation provides references to relevant research and emphasizes keywords such as counter unmanned aerial system, defeat, kinetic, and handheld. The deadline for proposal submission is March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation page on the Defense SBIR/STTR website.