Advanced Electron Backscatter Diffraction (EBSD) detector offering high pixel density, high-speed and low noise operation, and low kV detection enabled by directly detecting electrons using an application specific integrated circuit (ASIC) detector
ID: 8Type: BOTH
Overview

Topic

Advanced Electron Backscatter Diffraction (EBSD) detector offering high pixel density, high-speed and low noise operation, and low kV detection enabled by directly detecting electrons using an application specific integrated circuit (ASIC) detector

Agency

Department of CommerceNational Institute of Standards and Technology

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Commerce, specifically the National Institute of Standards and Technology, is seeking proposals for the FY2024 Small Business Innovation Research (SBIR) Program for CHIPS for America – CHIPS Metrology. The solicitation is focused on the topic of an Advanced Electron Backscatter Diffraction (EBSD) detector. This detector should offer high pixel density, high-speed, low noise operation, and low kV detection. It should be enabled by directly detecting electrons using an application-specific integrated circuit (ASIC) detector.

    The technology has potential applications in various fields, including materials science, semiconductor manufacturing, and nanotechnology. The high pixel density and high-speed capabilities of the detector can significantly enhance the accuracy and efficiency of electron backscatter diffraction analysis. The low noise operation and low kV detection enable improved imaging and characterization of materials at lower voltages.

    The project duration for this solicitation is not specified, but the application due date is June 14, 2024. The funding specifics can be found on the grants.gov website. Interested parties can find more information and submit their proposals through the provided links.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD STTR 24.D Annual - Optical-Atomic System Integration & Calibration (OASIC)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Optical-Atomic System Integration & Calibration (OASIC)" as part of the Small Business Innovation Research (SBIR) program. The objective is to create a user facility for an atom-based quantum testbed that can prototype, validate, and benchmark nanophotonic, optoelectronic, and electronic components and sub-systems. The goal is to enable the development of scalable, low-SWaP atom-based quantum sensors, clocks, computing architectures, and other integrated or chip-scale quantum technologies. The solicitation emphasizes the need for rigorous testing and evaluation procedures compatible with the performance requirements of atom-based quantum devices. The Phase I of the project will involve designing and analyzing the performance and operation of the proposed quantum testbed user facility, as well as developing an operation and business plan. The Phase II will focus on constructing and demonstrating the quantum testbed based on the Phase I design. The project duration for Phase II is 24 months. The development of integrated, low-SWaP quantum systems has applications in defense, communications, logistics, exploration, pharmaceuticals, and scientific research. The solicitation encourages the facility to be located at an academic site with a commercial entity responsible for operation and management. The Phase II milestones include reports on component acquisition and fabrication, interim progress reports, and a final report describing the construction and benchmarking of the quantum testbed. The Phase III of the project involves the dual-use applications of the developed quantum systems in both defense and commercial sectors.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD SBIR 24.4 Annual - xTech Search 8 SBIR Finalist Open Topic Competition
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the xTech Search 8 SBIR Finalist Open Topic Competition. The objective of this solicitation is to find novel and disruptive concepts and technology solutions with dual-use capabilities that can address the Army's current needs and apply to current Army concepts. The technology areas of interest include Electronics, Human Systems, and Sensors. The Army is particularly interested in technologies related to Artificial Intelligence/Machine Learning, Advanced Materials, Advanced Manufacturing, Autonomy, Cyber, Human Performance, Immersive, Network Technologies, Position, Navigation and Timing (PNT), Power, Software Modernization, and Sensors. The Phase I of the project requires a feasibility study and concept plans, while Phase II involves producing prototype solutions for evaluation by soldiers. Phase III focuses on the maturation of the technology and commercialization. The solicitation is open until March 31, 2025. For more information, visit the solicitation agency website.
    DOD SBIR 24.4 Annual - xTech Search 8 SBIR Finalist Open Topic Competition
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the xTech Search 8 SBIR Finalist Open Topic Competition. The objective of this solicitation is to find novel and disruptive concepts and technology solutions with dual-use capabilities that can address the Army's current needs and apply to current Army concepts. The technology areas of interest include Electronics, Human Systems, and Sensors. The Army is particularly interested in technologies related to Artificial Intelligence/Machine Learning, Advanced Materials, Advanced Manufacturing, Autonomy, Cyber, Human Performance, Immersive, Network Technologies, Position, Navigation and Timing (PNT), Power, Software Modernization, and Sensors. The Phase I of the project requires a feasibility study and concept plans, while Phase II involves producing prototype solutions that can be easily operated by soldiers. Phase III focuses on the maturation of the technology and its transition to TRL 6/7, as well as further development and commercialization. The solicitation is open until March 31, 2025. For more information, visit the solicitation agency website.
    DOD SBIR 24.4 Annual - Autonomous Optical Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight. The sensor will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities, allowing it to calibrate and manage itself and operate autonomously for an extended period. The sensor will wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated configuration of the Autonomous Optical Sensor (AOS) that includes various types of optical sensors and an AI framework. Phase II will involve creating a prototype of the AOS based on the Phase I analysis, refining the integrated system design, and conducting functional testing in an operational context. The potential applications of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project is currently open for proposals, with a closing date of March 31, 2025. More information can be found on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Autonomous Optical Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Low-cost Longwave Bolometer Camera Fabrication Techniques
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Low-cost Longwave Bolometer Camera Fabrication Techniques" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop novel technologies and fabrication techniques to reduce the cost of sensor payloads based on resistive microbolometer technology. The focus is on reducing the unit cost of the focal plane array and supporting a low-cost sensor. The solutions should be ready to transition into a camera module development effort by the end of Phase II. The solicitation emphasizes the importance of thermal longwave infrared (LWIR) capabilities in various Army applications and the need for a thermal sensor payload with high-definition array and dramatically reduced unit price. The solutions can involve novel manufacturing techniques, new materials systems, innovative component or module designs, or other approaches. Direct to Phase II contracts will focus on demonstrating enabling developments, and Phase II sequential efforts will deliver a prototype payload meeting the specified requirements for evaluation by Army Unmanned Aircraft Systems (UAS) or other programs. Phase I of the solicitation is only accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for an 18-month period of performance. DP2 proposals are highly encouraged if they meet the requirements. Proposals should demonstrate the estimated cost reduction compared to products made with current fabrication techniques and discuss the impact on size, weight, and power of a complete camera module. Initial ideas on potential paths for integration into a production camera module should also be discussed. Phase II involves designing and fabricating a prototype device that demonstrates the proposed solution to reduce thermal sensor payload unit cost. The impact of the solution on the unit price of a final sensor payload and its incorporation into such a payload should be discussed. Relevant interfaces should be defined and documented, and potential partnerships with integrators or other companies for follow-on efforts should be considered. In Phase III, the solicitation highlights the potential dual-use applications of leveraging bolometer manufacturing methods for low-cost long wave infrared (LWIR) sensors. These applications include smartphone camera augmentation, UAV camera augmentation (specifically via the Office of Naval Research), home security systems, and climate tech via quantum dot (QD) development. Overall, this solicitation seeks innovative solutions to reduce the cost of thermal sensor payloads based on resistive microbolometer technology, with potential applications in various military and commercial sectors.