High-Fidelity Computational Modeling of Fluid-Thermal-Structural Interactions in Hypersonic Air-Breathing Systems
ID: N25A-T001Type: BOTH
Overview

Topic

High-Fidelity Computational Modeling of Fluid-Thermal-Structural Interactions in Hypersonic Air-Breathing Systems

Agency

Agency: DODBranch: NAVY

Program

Type: STTRPhase: BOTH
Timeline
    Description

    The Department of Defense, specifically the Navy, is seeking innovative solutions through the Small Business Innovation Research (SBIR) program to develop high-fidelity computational modeling for fluid-thermal-structural interactions in air-breathing hypersonic systems. The objective is to create robust and efficient computational methods that accurately predict the coupled responses of these systems at moderate hypersonic speeds, addressing critical challenges such as engine performance and operability during flight. This initiative is crucial for enhancing the design and performance of hypersonic vehicles, which have significant implications for both military applications and future commercial hypersonic transport. The opportunity is currently in the pre-release phase, with the solicitation set to open on January 8, 2025, and applications due by February 5, 2025. For more information, interested parties can visit the official source link at https://www.dodsbirsttr.mil/topics-app/.

    Files
    Title
    Posted
    Similar Opportunities
    OPEN TOPIC - Tactical CB Visualization -
    DOD
    The Department of Defense (DOD) is seeking innovative solutions through the SBIR program to enhance situational awareness and decision support for Warfighters operating in Chemical and Biological (CB) contested environments. The objective is to develop a tactical visualization tool or capability that integrates with Mission Oriented Protective Posture (MOPP) kits and various respirators, focusing on Human-Machine Interface (HMI) concepts to improve size, weight, and power (SWAP) demands. This opportunity is critical for ensuring effective communication and data visualization in dynamic battlefield scenarios, with potential dual-use applications in civilian sectors such as emergency response and manufacturing. Interested parties should note that the solicitation is set to open on January 7, 2026, with proposals due by January 28, 2026, and can find more information at the DOD SBIR website.
    Complex Geometries for Extended Wear Respirators Towards Regenerable Particulate Matter Protection -
    DOD
    The Department of Defense (DOD) is seeking innovative solutions through the Small Business Innovation Research (SBIR) program to develop a rugged, 3D-printable, PFAS-free particulate filtration impactor system for extended-wear respirators in military environments. The objective is to create a regenerable filtration system that can be easily manufactured at the point of need, attach to existing respirators (such as the M50 and commercial half-masks), and effectively trap aerosols while minimizing breathing resistance and clogging during high aerobic activity. This initiative addresses the significant health risks posed by high levels of airborne particulate matter (PM10 and PM2.5) that military personnel face, particularly in operational environments. Interested parties should note that the solicitation is currently in pre-release, with the open date set for January 7, 2026, and the application due date on January 28, 2026. For more information, visit the DOD SBIR website at https://www.dodsbirsttr.mil/topics-app/.
    Acoustic-based UAS Rainbow Oscillation Refraction Architecture (AURORA) -
    DOD
    The Department of Defense, specifically the Special Operations Command (SOCOM), is seeking innovative research proposals for the Acoustic-based UAS Rainbow Oscillation Refraction Architecture (AURORA) under the SBIR program. This initiative aims to develop an acoustic communications system that enables small uncrewed aerial systems (sUAS) within a swarm to communicate and determine their relative positions using sound waves generated by their propellers. The system must achieve spatio-spectral decomposition of these sound waves to encode and transmit information, facilitating decentralized multi-agent swarming while addressing challenges such as reciprocal interference, collision avoidance, and environmental variability. The opportunity includes a Phase I feasibility study to assess achievable data rates and system design options, followed by Phase II for prototype development and demonstration. The solicitation is currently in pre-release, with the open date set for January 7, 2026, and proposals due by January 28, 2026. Interested parties can find more information and submit proposals through the official SBIR website at https://www.dodsbirsttr.mil/topics-app/.
    OPEN TOPIC - Expeditionary Biologics-on-Demand (BOND) -
    DOD
    The Department of Defense (DOD) is seeking proposals for the Small Business Innovation Research (SBIR) program focused on the development of an OPEN TOPIC - Expeditionary Biologics-on-Demand (BOND) system. The primary objective is to create a portable, high-performance system for on-demand protein production that maximizes purity, potency, and quality through advanced automation and machine learning techniques. This initiative aims to enhance supply chain resilience and medical countermeasure capabilities by enabling localized production of diverse biologics, including therapies and vaccines, particularly in forward-deployed locations. The solicitation is currently in pre-release status, with an open date of January 7, 2026, and a close date of January 28, 2026. Interested parties can find more information and submit proposals through the DOD SBIR website at https://www.dodsbirsttr.mil/topics-app/.
    Secure Multi-Source Data Fusion Environment for pLEO Constellations -
    DOD
    The United States Space Force (USSF), through the Space Development Agency (SDA), is seeking innovative solutions for a Secure Multi-Source Data Fusion Environment tailored for proliferated Low Earth Orbit (pLEO) constellations. The objective is to develop an adaptable software platform capable of ingesting, integrating, and analyzing high-volume, low-latency data from diverse space-based sources, thereby enhancing real-time situational awareness and advanced analytics while adhering to zero-trust security principles. This initiative is critical for supporting the Department of Defense’s Proliferated Warfighter Space Architecture (PWSA) and aims to facilitate dynamic mission adaptability across both government and commercial applications. Interested parties should note that the solicitation is set to open on January 7, 2026, with proposals due by January 28, 2026, and further details can be found at the provided source link: https://www.dodsbirsttr.mil/topics-app/.
    Integrated Deployable Microsensors for Chemical Detection -
    DOD
    The Department of Defense (DoD) is seeking proposals for the development of integrated deployable microsensors for chemical detection under the SBIR program, specifically identified as CBD254-007. The objective is to design and fabricate low Size, Weight, Power, and Cost (SWaP-C) microsensors capable of detecting chemical warfare agents and pharmaceutical-based agents in vapor and aerosol forms, providing near real-time early warning in complex operational environments. This technology is crucial for enhancing rapid response and decision-making in both military and civilian applications, particularly for first responders in environmental detection and health monitoring. Proposals are due by January 28, 2026, with the opportunity opening on January 7, 2026, and further details can be found at the official solicitation agency website: https://www.dodsbirsttr.mil/topics-app/.
    Integrated S&T Insight and Co-Investment Decision Support Platform -
    DOD
    The United States Space Force (USSF) is seeking innovative solutions for the development of an "Integrated S&T Insight and Co-Investment Decision Support Platform" (SF254-D1201) aimed at enhancing decision-making capabilities for Task Force Futures (TF-F) and other USSF stakeholders. The platform is required to provide a secure, modular, and user-centric interface that consolidates insights on science and technology (S&T) capabilities, capital flow patterns, and innovation trends relevant to future space operations, thereby improving the alignment of research, development, test, and evaluation (RDT&E) priorities with commercial innovation activities. This initiative is critical for maintaining U.S. technological advantage in an increasingly competitive space domain, facilitating proactive planning, and strengthening public-private partnerships. Interested parties should note that the application due date is January 28, 2026, with the opportunity being part of a Direct-to-Phase II (D2P2) effort under the SBIR program, and further details can be found at the provided source link.
    Space-Based Interceptors for Boost-Phase Missile Defense in the Endo-Atmospheric Region -
    DOD
    The U.S. Space Force (USSF) is soliciting innovative solutions for the development of space-based interceptors (SBIs) capable of conducting boost-phase missile defense within the endo-atmospheric region, specifically below 120 km altitude. The primary objective is to create compact, high-performance platforms that incorporate high-G propulsion systems, advanced sensor suites for reliable target discrimination, and low-size, weight, and power (SWaP) interceptors, all designed for rapid and precise engagements. This initiative is critical for establishing a layered missile defense architecture, emphasizing scalable designs and miniaturization suitable for deployment in distributed space-based platforms. Interested parties should note that this opportunity is a Direct-to-Phase II effort, with proposals due by January 28, 2026, and further details can be found at the provided source link: https://www.dodsbirsttr.mil/topics-app/.
    Novel Technologies for CWMD and Related Threats - Open Topic -
    DOD
    The Defense Threat Reduction Agency (DTRA) is seeking innovative solutions through its Small Business Innovation Research (SBIR) program to enhance the detection of weapons of mass destruction (WMD) and related threats. The objective is to develop novel technologies that utilize existing general-purpose military hardware or commercially available devices to detect WMD threats without relying on specialized sensors. This initiative is crucial for improving national security capabilities in a landscape where the commercial market for detection equipment is limited. The opportunity includes multiple phases: Phase I focuses on identifying feasible use cases and developing a proof of concept, while Phase II involves building and testing a prototype. The solicitation is currently in the pre-release stage, with an open date of January 7, 2026, and a close date of January 28, 2026. Interested parties can find more information and apply through the DOD SBIR website.
    Far Forward Manufacturing of CBRN Sensors -
    DOD
    The Department of Defense is seeking proposals for the Far Forward Manufacturing (FFM) of Chemical, Biological, Radiological, and Nuclear (CBRN) sensors, aimed at enhancing the production capabilities of these critical technologies. The objective is to accelerate the development of sensors that are minimal in size, weight, and power consumption while enabling near real-time detection and transmission of threat information to warfighters, thereby reducing reliance on complex supply chains. This initiative is vital for ensuring force readiness and adaptability in modern warfare, with potential applications extending beyond the military to commercial sectors such as clinical diagnostics and environmental sensing. Interested parties should note that the solicitation is currently in the pre-release phase, with proposals due by January 28, 2026, and further details can be found at the provided source link: https://www.dodsbirsttr.mil/topics-app/.