Alternative Fabrication Pathways for Complex Alloys
ID: N242-089Type: BOTH
Overview

Topic

Alternative Fabrication Pathways for Complex Alloys

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic "Alternative Fabrication Pathways for Complex Alloys" as part of their SBIR 24.2 Annual solicitation. The Navy branch is specifically interested in this topic. The objective is to develop a solid state processing pathway for refractory high entropy alloys (RHEAs) that avoids partitioning seen in melting/solidification processes. RHEAs are high-temperature materials with excellent mechanical properties that have the potential to replace nickel-based superalloys. The current methods for processing RHEAs involve melting, which can be challenging due to the high melting points of the constituent metals and elemental segregation during solidification. The SBIR topic aims to develop a method for RHEA production based on the reduction of metal oxides or a mixture of oxides and metallic powders, preferably utilizing non-flammable gas mixtures. The process could result in RHEA metallic powders or RHEA bodies via additive processing of ceramic powders and subsequent reduction heat-treatment. The project will be conducted in three phases: Phase I involves exploring the literature and utilizing computational methods to determine non-additive manufacturing processes that minimize energies and avoid partitioning. Phase II focuses on optimizing processing parameters and developing models/algorithms that link alloy properties to the fabricating process and resulting microstructure. Phase III involves applying the comprehensive models and algorithms to link optimized processing parameters with alloy chemistries that avoid elemental segregation and compositional inhomogeneities. The developed process has the potential to simplify strategies for forming passive films on complex alloys and improve acceptance for producing components for the Navy and private industry. The project duration is not specified, but the solicitation is open until June 12, 2024. For more information and to submit proposals, visit the DOD SBIR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Laminated Metallic Armor
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Laminated Metallic Armor" as part of its SBIR program. The Army branch is specifically interested in innovative manufacturing technologies that can cost-effectively produce laminated/graded metallic armor plates and high strength structural components. The goal is to reduce weight while maintaining the same level of force protection. In Phase I, proposals are accepted with a budget of up to $250,000 for a 6-month period. The feasibility of laminated steel armor will be demonstrated through various tasks, including computational materials engineering, prototype production, characterization, and ballistic testing. The weldability and scalability of the armor system will also be assessed. In Phase II, the focus shifts to maturing the manufacturing process, improving ballistic performance, and exploring the use of advanced alloys and multiple materials. The goal is to develop a stable and well-controlled process for producing shaped components with layered metallic armor arrangements. In Phase III, potential dual-use applications are highlighted, such as the automotive sector, space exploration, banking, construction machinery, and police/security industries. These industries can benefit from the enhanced performance and impact resistance of laminated armor. The solicitation is currently open, and the application due date is March 31, 2025. More details can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
DOD SBIR 24.4 Annual - NAVSEA Open Topic for Sustainment and Obsolescence
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the NAVSEA Open Topic for Sustainment and Obsolescence. The objective is to address Navy needs regarding sustainment and obsolescence. NAVSEA is looking for existing technology demonstration platforms, prototypes, and commercial products that can quickly and reliably get Navy assets back in the field. The focus areas for potential projects include material quality, AI/ML generated work instructions, additive manufacturing advancements, cold spray technology advancements, shipyard and maintenance operational logistics improvements, rapid manufacturing for urgent part obsolescence needs, and digital twins for system lifecycle sustainability and design evolution. The Phase I awards for this topic will have a period of performance of four months and a cost not to exceed $75,000. Phase I feasibility will describe the proposed technology, improvements to existing capabilities, and impacts to current logistics. Phase II will involve developing a functional prototype, a transition plan, and further commercialization. The Phase II effort will be specific to each project. The technology developed through this program will have dual-use applications and can be applied commercially. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2652283).
DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" as part of the SBIR program. The research focuses on advancements in additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. The objective is to deliver combat power and lethality by achieving responsiveness, intensity, and the ability to deliver munitions at range. The technology sought includes propulsion solutions using high-density, storable, and rapidly loadable propellants, as well as advancements in understanding and characterizing novel fluid dynamics for enhanced propulsion performance. The solicitation is open for Phase II proposals only, and proposers must demonstrate feasibility and potential military or commercial applications. The Phase II effort consists of a base period of 12 months and an option period of 12 months. The ultimate goal is to transition and commercialize the developed technologies for both military and commercial applications, particularly in the areas of manned or unmanned air and space platforms.
DOD SBIR 24.4 Annual - Electronic quality ferroelectric III-Nitride epitaxy for device heterostructures
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Electronic quality ferroelectric III-Nitride epitaxy for device heterostructures" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop single crystalline epitaxial thin films and heterostructures of group III-IIIb-Nitride thin films for electronic device applications. The goal is to produce films that are scalable to 4-inch diameter wafer sizes or larger. The research aims to enable the development of useful products such as high operating temperature electronic memory, high temperature electronic circuits, and integrated nonlinear optical photonic circuits for UV-visible wavelengths. In Phase I, the focus is on attaining the appropriate precursors for epitaxy and producing films lattice matched to GaN and other substrates. The goal is to assess the optical and electrical quality of the thin films and demonstrate ferroelectric behavior. Phase II continues the pursuit of single crystalline epitaxial thin films and heterostructures, with a focus on developing processes relevant to 4" or larger substrates. The goal is to fabricate devices for electronic memory applications and explore switching behavior. Optical properties and nonlinear optical functionality are also considered. In Phase III, the aim is to produce epitaxial foundry services for electronic and photonic device regimes that utilize ferroelectric III-Nitride thin films. Collaboration with other research groups is encouraged to make accurate comparisons with other epitaxial approaches. The solicitation is open until March 31, 2025. For more information, visit the [SBIR topic link](https://www.sbir.gov/node/2651313) or the [solicitation agency website](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).